2024 Statewide Airfield Pavement Management Program

AIRFIELD PAVEMENT EVALUATION REPORT

DTS - Destin Executive Airport | District 3

Florida Department of Transportation

AIRPORT PAVEMENT EVALUATION REPORT

Statewide Airfield Pavement Management Program

Prepared by:

FDOT Aviation Office 605 Suwannee Street Tallahassee, Florida 32399-0450

Website: FDOT Aviation Office

Interactive Web Application: FDOT SAPMP Interactive Web Application

TABLE OF CONTENTS

EXECUTIVE SUMMARY	1
Pavement Inventory Summary	1
Pavement Condition Summary	2
Forecasted Pavement Condition Summary	3
Inventory and Pavement Condition Evaluation Results by Section	4
Major Rehabilitation Needs Summary	5
CHAPTER 1 – INTRODUCTION	6
Program Background	6
Program Benefits	
SAPMP Process Overview	7
CHAPTER 2 – SYSTEM INVENTORY	
System Inventory Information	8
Pavement Inventory Summary1	0
CHAPTER 3 – PAVEMENT CONDITION ANALYSIS1	4
Pavement Condition Index1	
Typical Pavement Distress Summary1	5
Pavement Condition Summary1	
Forecasted Pavement Condition Summary1	
CHAPTER 4 – M&R PLANNING AND BUDGET NEEDS1	
Maintenance and Rehabilitation Overview1	9
Critical PCI Value2	
Pavement Treatment Minimum Useful Life2	0
Localized Maintenance Needs2	1
Major Rehabilitation Project Types2	2
M&R Planning Cost Development2	3
Major Rehabilitation Needs Summary2	5
Major Rehabilitation Budget Analysis2	7

LIST OF TABLES

Forecasted Branch-Level Pavement Performance	
AIP Handbook PCI Requirements	
AIP Handbook Minimum Useful Life	
Year 1 Localized Maintenance by Work Type Summary	
5-Year Major Rehabilitation Needs by Branch Use	
Budget Scenario Annual Needs Estimate	

LIST OF FIGURES

10
11
12
13
16
16
17
18
19
24
25
26
28
28

APPENDIX

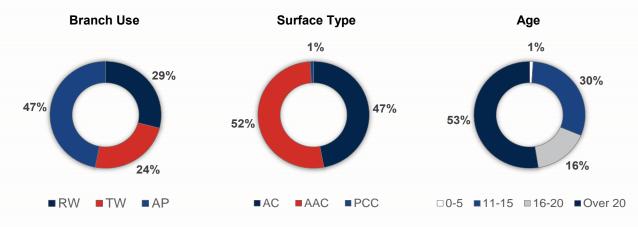
Appendix A: Pavement Condition Observations Appendix B: M&R Planning Needs by Section Appendix C: Technical Exhibits

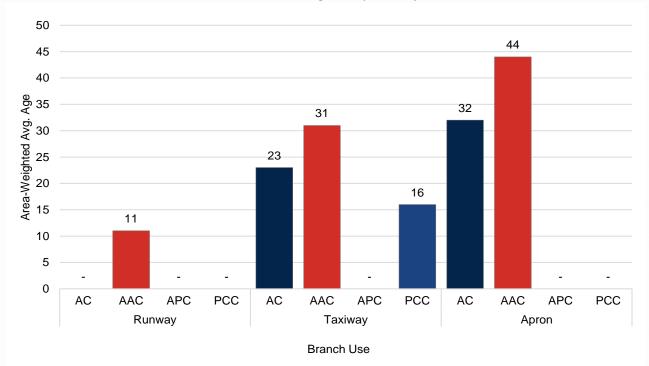
ACRONYMS AND ABREVIATIONS

AAC - Asphalt Concrete overlaid over existing Asphalt Concrete

- AC Asphalt Concrete
- AIP Airport Improvement Program
- AP Apron

APC – Asphalt over existing Portland Cement Concrete


- **ASTM** American Society for Testing and Materials
- FAA Federal Aviation Administration
- FDOT Florida Department of Transportation
- FDR Full-Depth Reclamation
- FOD Foreign Object Debris
- **GA** General Aviation
- LF Linear Feet
- M&R Maintenance and Rehabilitation
- **PAVER** Software Program for Pavement Management
- PCC Portland Cement Concrete
- PCI Pavement Condition Index
- RW Runway
- SAPMP Statewide Airfield Pavement Management Program
- SF Square Feet
- TL Taxilane
- TW Taxiway
- WT Whitetopping

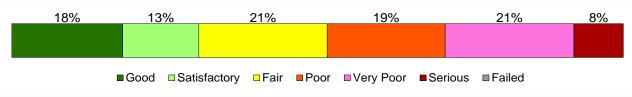

EXECUTIVE SUMMARY

The airfield pavement condition survey was performed at Destin Executive Airport (DTS) in April 2024 as part of the latest FDOT Statewide Airfield Pavement Management Program (SAPMP) update. The results of this update are summarized in the remainder of this report.

Pavement Inventory Summary

Destin Executive Airport contains approximately 1.7 million square feet of airfield pavements consisting of runway, taxiway, and apron assets. The following figures summarize the key inventory items at DTS including branch use, surface type, and estimated pavement age at inspection.

Estimated Branch Use Age at Inspection by Surface


The section-level inventory details are presented in tabular format in the **Inventory and Pavement Condition Evaluation Results by Section** table. The section delineations are graphically depicted in the **Network Definition Exhibit**.

FDOT

Pavement Condition Summary

DTS's overall area-weighted network PCI (average PCI adjusted to account for the relative size of the pavement sections) is a 57. Approximately 31% of the network's pavements are in Good or Satisfactory condition. Approximately 21% are in Fair condition, and 48% are in Poor condition or below and will likely require rehabilitation within the near future. The figure below summarizes the area-weighted average pavement condition distribution at DTS.

Current Condition - Overall Network

The area-weighted branch use PCIs are displayed graphically in the figures below. The current PCIs at a section-level are displayed graphically on the **Network PCI Results Exhibit** and in tabular format in the **Inventory and Pavement Condition Evaluation Results by Section** table.

Runway Taxiway

Branch Use

FDOŤ

■2013 ■2017 ■2021 □2024 —— Critical PCI

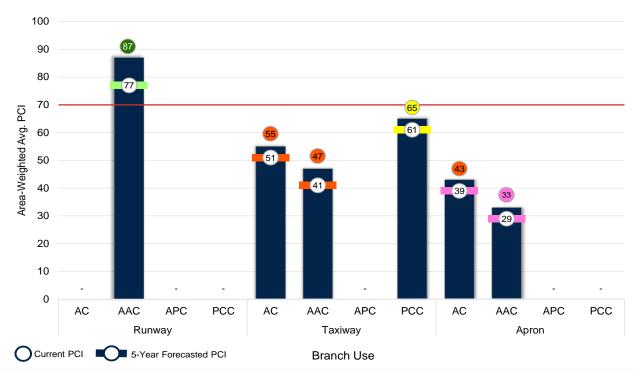
Network

0

Apron

Forecasted Pavement Condition Summary

One of the main goals of the SAPMP is to forecast the future condition of each pavement section. Prediction curves were developed in PAVER to determine typical deterioration rates which are then used to forecast a future PCI value. The forecasts do not guarantee future PCI values; they are a planning tool to aid in the timing of maintenance and rehabilitation activities.


The DTS network PCI is forecasted to deteriorate from a PCI value of 57 (Fair) to a 51 (Poor) in the next five years if no substantial maintenance and rehabilitation work is completed.

Forecasted Branch-Level Pavement Performance

Branch Use	2024 (Current)	2025	2026	2027	2028	2029
Network	57	55	54	53	52	51
Runway	87	84	83	81	79	77
Taxiway	50	49	48	47	45	44
Apron	42	41	40	39	38	38

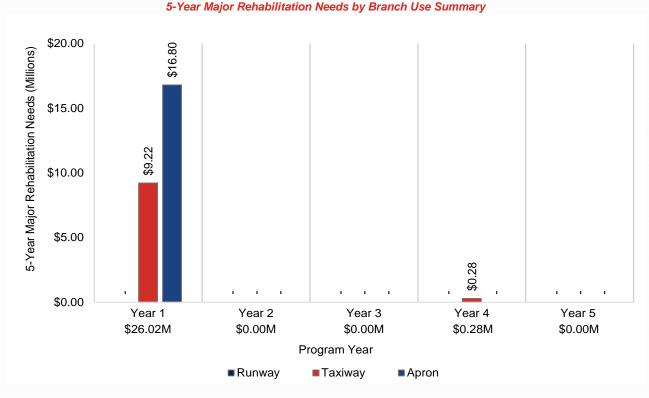
Section-level details are available in tabular format in the **Inventory and Pavement Condition Evaluation Results by Section** table.

FDO

Inventory and Pavement Condition Evaluation Results by Section

			Inventory Da	ita				Current (2024) PCI Data Forecasted PCI Data				Forecasted PCI Data					
Network ID	Branch ID	Branch Use	Section ID	Area (SF)	Surface Type	Estimate of Last Construction Date	PCI	Condition Rating	PCI % Climate	PCI % Load	PCI % Other	2025	2026	2027	2028	2029	
DTS	RW 14-32	RUNWAY	6105	175,000	AAC	3/1/2013	85	Satisfactory	100	0	0	82	80	78	77	75	
DTS	RW 14-32	RUNWAY	6110	175,000	AAC	3/1/2013	87	Good	100	0	0	84	82	80	79	77	
DTS	RW 14-32	RUNWAY	6115	55,000	AAC	3/1/2013	89	Good	100	0	0	86	84	82	81	79	
DTS	RW 14-32	RUNWAY	6117	55,000	AAC	3/1/2013	91	Good	100	0	0	88	86	84	83	81	
DTS	RW 14-32	RUNWAY	6120	20,000	AAC	3/1/2013	83	Satisfactory	100	0	0	80	78	76	75	73	
DTS	RW 14-32	RUNWAY	6122	20,009	AAC	3/1/2013	87	Good	100	0	0	84	82	80	79	77	
DTS	TW A	TAXIWAY	115	140,000	AAC	1/1/1992	40	Very Poor	58	38	4	38	37	35	34	33	
DTS	TW A	TAXIWAY	135	12,535	AAC	1/1/1992	43	Poor	72	28	0	41	40	38	37	36	
DTS	TW A	TAXIWAY	150	41,334	AAC	1/1/1992	55	Poor	90	0	10	53	52	51	50	49	
DTS	TW A1	TAXIWAY	105	18,192	AAC	1/1/1992	63	Fair	98	0	2	61	60	59	58	57	
DTS	TW A2	TAXIWAY	110	9,346	AAC	1/1/1992	46	Poor	99	0	1	44	42	41	40	39	
DTS	TW A3	TAXIWAY	120	6,596	AAC	1/1/1992	46	Poor	93	0	7	44	42	41	40	39	
DTS	TW A3	TAXIWAY	122	2,749	AAC	3/1/2013	87	Good	100	0	0	84	82	80	79	77	
DTS	TW A3	TAXIWAY	124	8,261	AAC	1/1/1992	43	Poor	70	29	1	41	40	38	37	36	
DTS	TW A4	TAXIWAY	125	9,346	AAC	1/1/1992	38	Very Poor	77	23	0	36	35	33	32	31	
DTS	TW A4	TAXIWAY	128	3,073	AC	1/1/1992	46	Poor	98	0	2	45	44	44	43	43	
DTS	TW A4	TAXIWAY	129	3,219	AAC	1/1/2022	96	Good	0	0	100	93	91	90	88	86	
DTS	TW A5	TAXIWAY	130	6,474	AAC	1/1/1992	42	Poor	63	25	12	40	39	37	36	35	
DTS	TW A5	TAXIWAY	132	3,230	AAC	1/1/1992	46	Poor	77	0	23	44	42	41	40	39	
DTS	TW A5	TAXIWAY	134	2,868	AAC	3/1/2013	90	Good	100	0	0	87	85	83	81	79	
DTS	TW A6	TAXIWAY	140	18,192	AAC	1/1/1992	61	Fair	100	0	0	59	58	57	56	55	
DTS	TW HANG	TAXIWAY	305	52,559	AC	12/25/1999	53	Poor	66	0	34	52	51	50	50	49	
DTS	TW HANG	TAXIWAY	307	6,509	AC	6/1/2011	75	Satisfactory	100	0	0	73	71	70	69	68	
DTS	TW HANG	TAXIWAY	310	3,873	AC	12/25/1999	62	Fair	86	0	14	60	59	58	58	57	
DTS	TW HANG	TAXIWAY	315	38,377	AC	12/25/1999	47	Poor	82	18	0	46	45	45	44	44	
DTS	TW HANG	TAXIWAY	320	17,149	PCC	7/1/2008	65	Fair	27	58	15	64	63	62	61	61	
DTS	TW HANG	TAXIWAY	325	13,203	AC	7/1/2008	75	Satisfactory	100	0	0	73	71	70	69	68	
DTS	AP N	APRON	4205	247,741	AC	7/1/2008	60	Fair	91	0	9	58	57	56	55	54	
DTS	AP S	APRON	4105	51,294	AAC	1/1/1985	23	Serious	38	15	47	22	21	20	20	19	
DTS	AP S	APRON	4107	8,466	AAC	1/1/1985	23	Serious	62	25	13	22	21	20	20	19	
DTS	AP S	APRON	4110	66,322	AC	1/1/1974	22	Serious	46	0	54	20	19	18	17	17	
DTS	AP S	APRON	4112	10,302	AC	1/1/1974	33	Very Poor	95	0	5	32	31	30	30	29	
DTS	AP S	APRON	4115	38,307	AAC	1/1/1975	52	Poor	97	0	3	50	50	49	48	47	
DTS	AP S	APRON	4120	112,955	AC	1/1/1987	44	Poor	86	0	14	43	42	42	41	41	
DTS	AP S	APRON	4125	203,656	AC	1/1/1983	27	Very Poor	95	0	5	25	24	24	23	22	
DTS	AP S	APRON	4130	13,615	AAC	1/1/1975	21	Serious	38	62	0	20	19	18	18	17	
DTS	AP S	APRON	4150	57,703	AC	1/1/1992	56	Fair	100	0	0	54	54	53	52	51	

<70: Rehabilitation Eligible


<55: Reconstruction Eligible

Major Rehabilitation Needs Summary

Total 5-Year Major Needs = \$26,303,000

			AC Re	construction AC	Rehabilitation	PCC Rehabilitation		
\$21,674,000						000 –⁄ \$674,000 –⁄		
5-Year Major Rehabilitation Needs by Branch Use								
	Annual Planning Estimate Cost (Millions)							
Branch Use ⁻	Year 1	Year 2	Year 3	Year 4	Year 5	Branch Use Total		
Runway	-	-	-	-	-	-		
Taxiway	\$9.22	-	-	\$0.28	-	\$9.50		
Apron	\$16.80	-	-	-	-	\$16.80		
Annual Total	\$26.02M	\$0.00M	\$0.00M	\$0.28M	\$0.00M	\$26.30M		

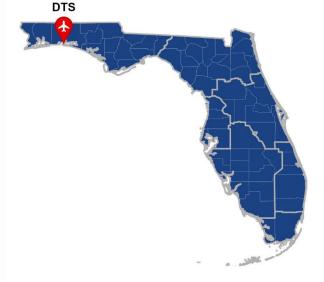
The **Major Rehabilitation Exhibit** depicts which sections will need major rehabilitation within the next 5 years. **Appendix B** provides a section-level detailed summary of these needs in addition to the cost of various rehabilitation options should a different pavement rehabilitation type be desired.

FDO

AVIATION

5

Executive Summary


CHAPTER 1 – INTRODUCTION

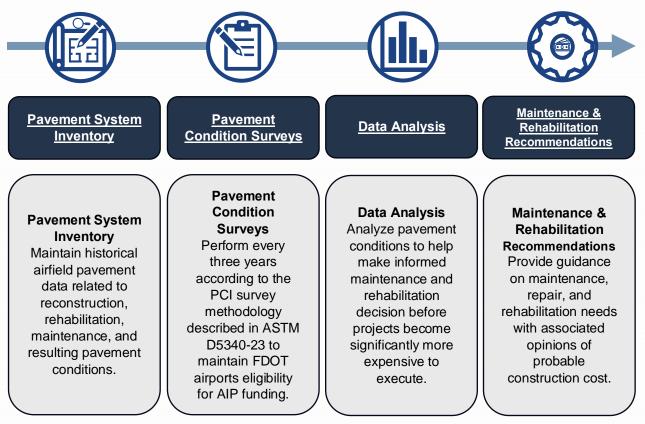
Program Background

In 1992, the Florida Department of Transportation (FDOT) established the Statewide Airfield Pavement Management Program (SAPMP) to provide program managers, District Aviation Offices, and airport operators with a system to proactively manage airfield pavement infrastructure within the Florida airport system. The SAPMP includes Pavement Condition Index (PCI) surveys for airport facilities. Currently, the SAPMP includes 97 participating public-use airports with pavement facilities and provides its users with comprehensive data to better manage their pavement assets.

FAA grant assurances require airports to have a pavement management system in place for all projects that are to be funded through the Airport Improvement Program (AIP). To remain eligible for FAA funding through the AIP, FDOT performs the SAPMP update for each airport on a 3-year basis in adherence to the FAA Advisory Circular 150/5380-7B "Airport Pavement Management Program," and ASTM D5340-23 "Standard Test Method for Airport Pavement Condition Index Surveys."

The pavement condition results for DTS – Destin Executive Airport are presented in this summary and can be utilized by the Airport to identify, prioritize, and schedule pavement maintenance, repair, reconstruction, and major rehabilitation projects.

Program Benefits


The SAPMP enables the Aviation Office, FDOT Districts, and airport staff to effectively monitor pavement conditions at Florida airports. The system provides critical data to support informed decision-making about airport infrastructure investments. By assessing the condition of pavement facilities, stakeholders can determine when rehabilitation is necessary, aiding in project planning over the next five years, with updates every three years.

The SAPMP meets the requirements of maintaining an effective pavement management program for participating airports by offering insights into both current and future pavement conditions and budgetary needs. It helps identify maintenance, repair, and major rehabilitation requirements, while also providing planning-level budget estimates for construction costs. This proactive approach to pavement management allows stakeholders to prioritize rehabilitation efforts, resulting in cost savings by addressing projects before pavement conditions reach a critical state and costs escalate.

6

SAPMP Process Overview

The SAPMP is limited to performing tasks in adherence to the key elements of an effective pavement management program on a statewide level. The primary tasks undertaken to update the SAPMP include, but are not limited to:

Click below to view the information summarized within this report online in the interactive web application.

AVIATION

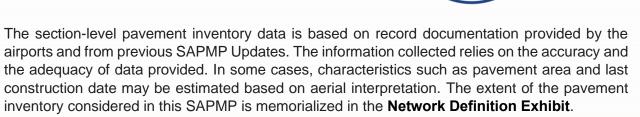
FDO

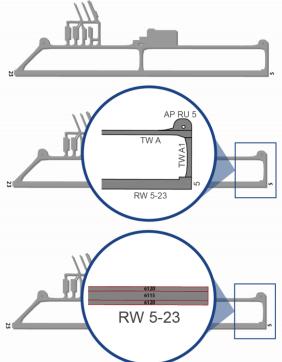
CHAPTER 2 – SYSTEM INVENTORY

System Inventory Information

The pavement system inventory is developed during the Network Definition process in which large, homogenous pavement areas are subdivided into smaller pavement management units (Network, Branch, Section, Sample) for evaluation based on functional use, pavement surface type, construction history, traffic operations, importance, and other factors. The terms Network-, Branch-, and Section-level are defined below.

Network-Level

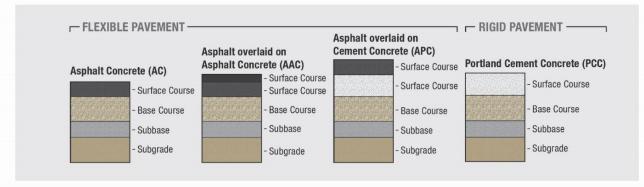

An individual airport's aircraft rated pavement facilities maintained by the airport.


Branch-Level

A logical unit of generally identifiable pavement within a network that has a distinct function classification. This generally includes all runways, taxiways, taxilanes, and aprons. (Example, Taxiway A1).

Section-Level

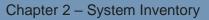
A subdivision of a branch that has consistent characteristics through its length or area. These characteristics include structural composition, construction history, age, traffic type, traffic frequency, and pavement condition.



Surface Type

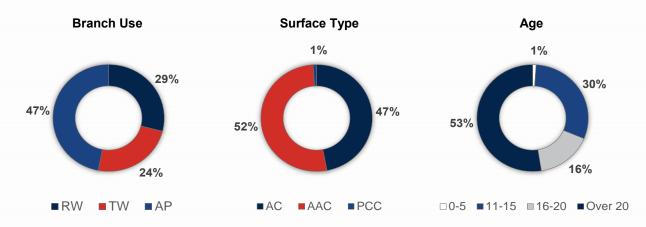
FDOT airfield pavements consist of two predominant pavement types: flexible (AC-surfaced) and rigid (PCC-surfaced), which are further broken down into four categories defined below. The pavement sections shown are intended to be conceptual representations and may vary from actual construction. It should be noted that a select number of airports within the program contain a fifth surface type called Whitetopping Pavement (WT). Whitetopping pavement is a non-FAA standard composite pavement comprised of relatively thin PCC overlaid on an existing AC pavement structure.

Pavement surface types have been assigned to the various pavement sections based on the record documentation incorporated within the SAPMP database and as observed during airfield pavement field assessments.

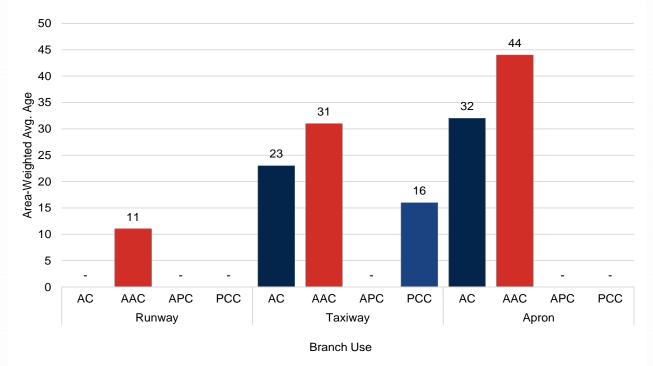

Estimated Pavement Age

Pavement age is determined by the date of the last major work project performed. The estimation of pavement age is based on the recent construction information provided by the airports at the start of the program. Major work such as reconstruction or rehabilitation resets a pavement's age to zero and the PCI to 100. It should be noted that surface treatments do not reset a pavement's age to zero as a reconstruction or rehabilitation project would; they are used as a measure to maintain and improve the current pavement surface and extend the useful life of the pavement without performing major work.

The **Estimated Age at Inspection Exhibit** summarizes the age of the pavement sections at the time of the 2024 PCI survey by providing the approximate limits and age ranges within the pavement network. Major pavement projects completed within the last 5 years are summarized in the **Construction History Exhibit**.


AVIATION

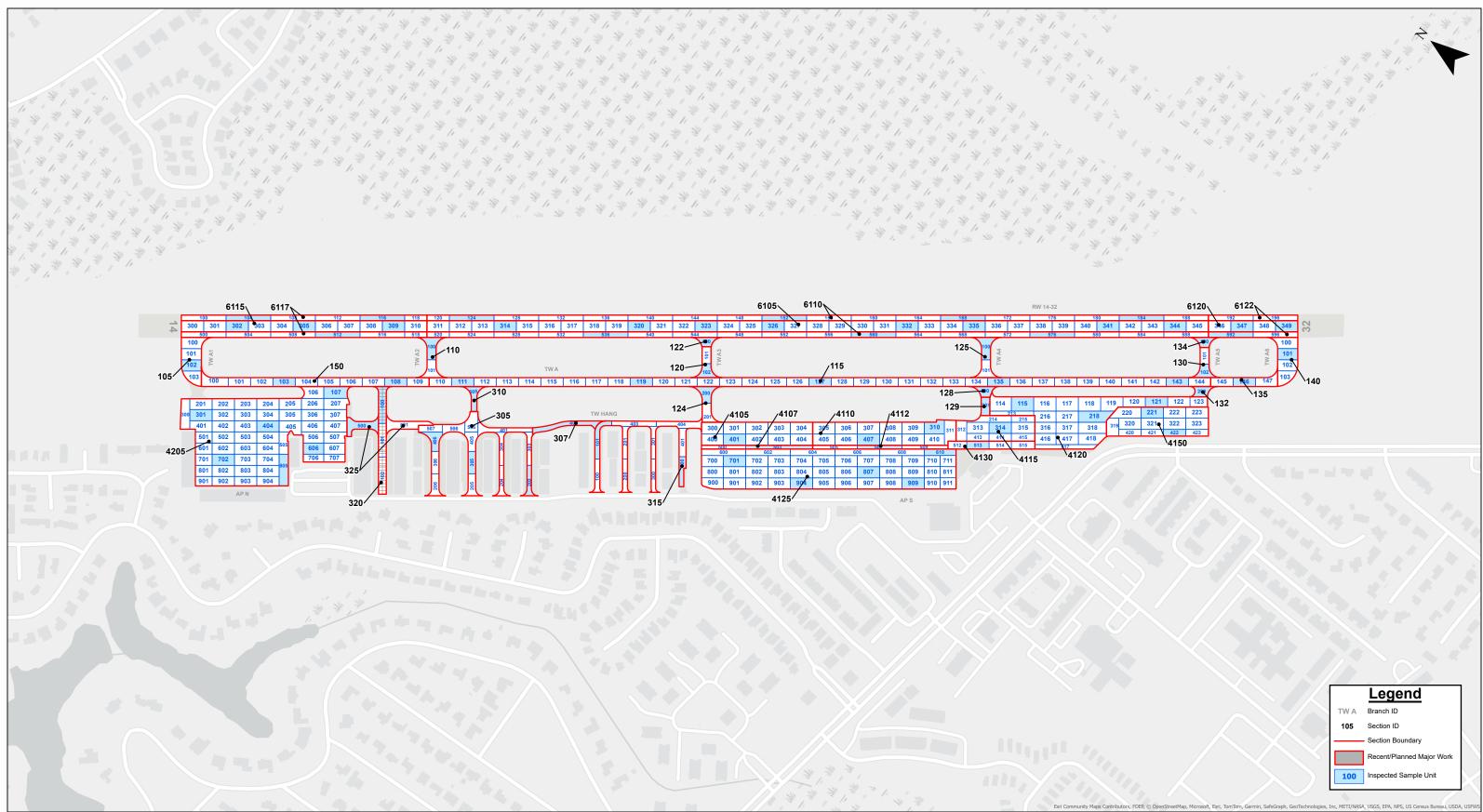
FDO



Pavement Inventory Summary

Destin Executive Airport contains approximately 1.7 million square feet of airfield pavements consisting of runway, taxiway, and apron assets. The following figures summarize the key inventory items at DTS including branch use, surface type, and estimated pavement age at inspection.

Estimated Branch Use Age at Inspection by Surface

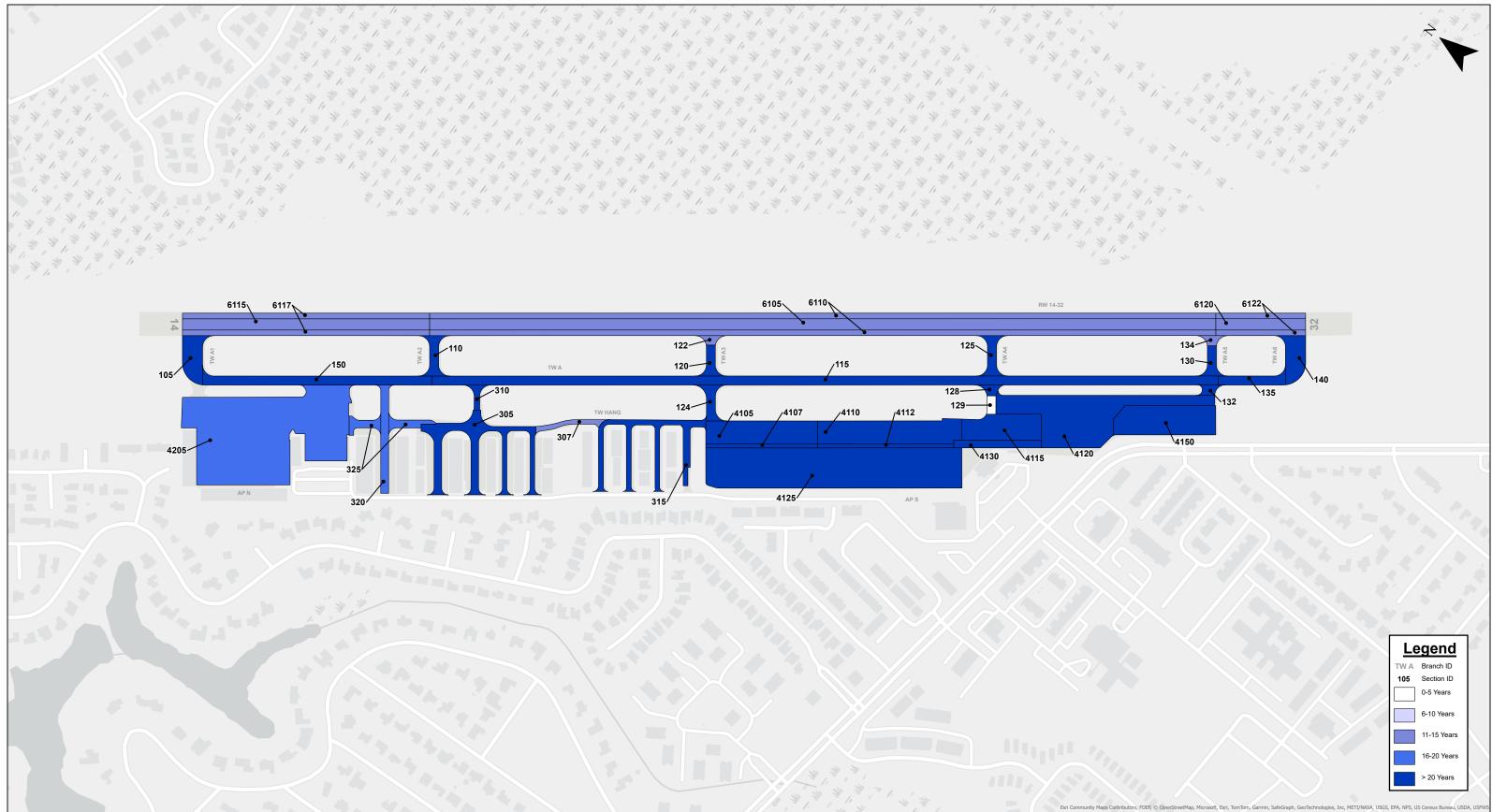

The section-level inventory details are presented in tabular format in the **Inventory and Pavement Condition Evaluation Results by Section** table. The section delineations are graphically depicted in the **Network Definition Exhibit**.

FDC

AVIATION

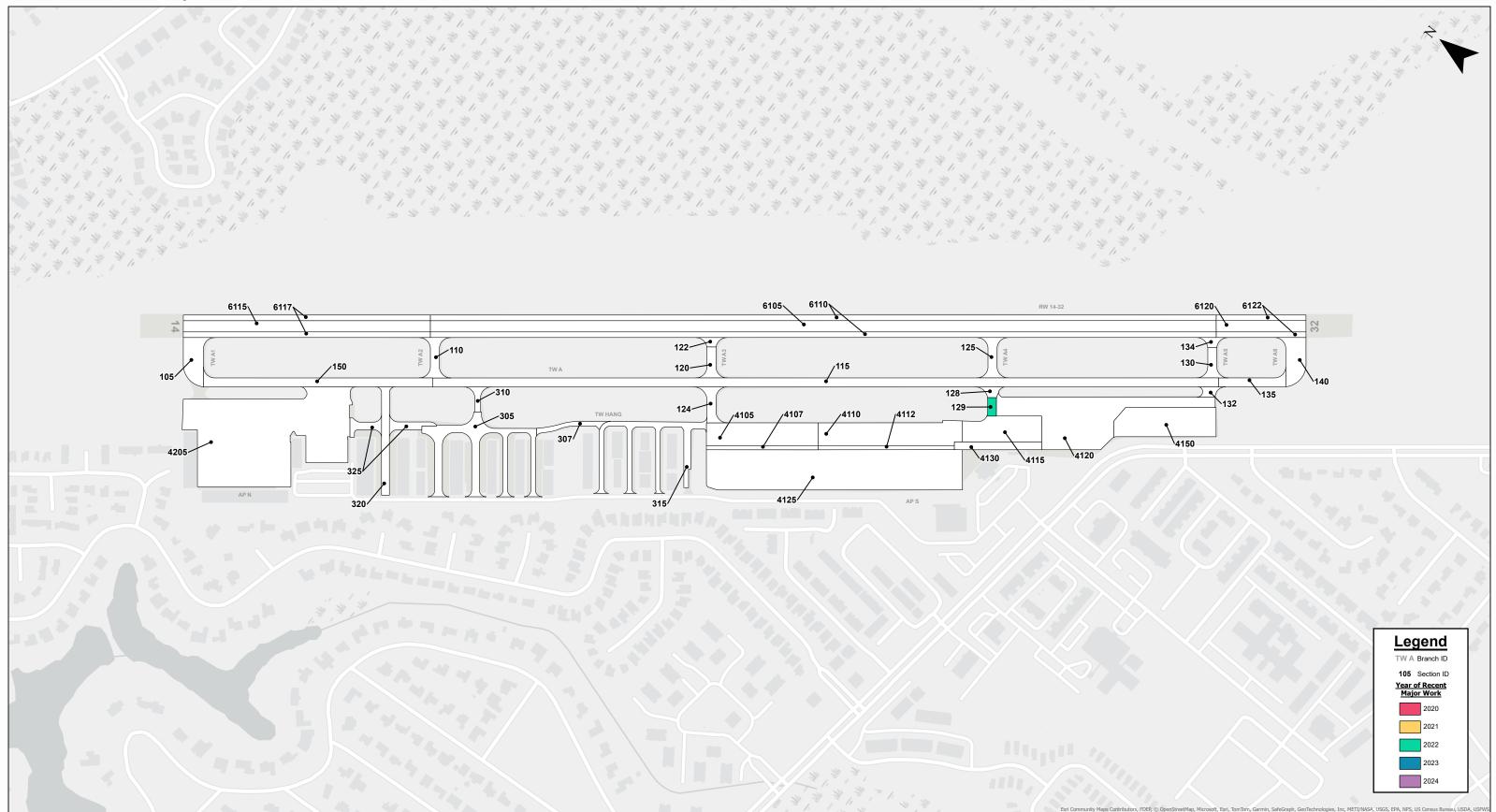
10

Network Definition



*This drawing is for pavement management purposes only. Drawing not to scale.

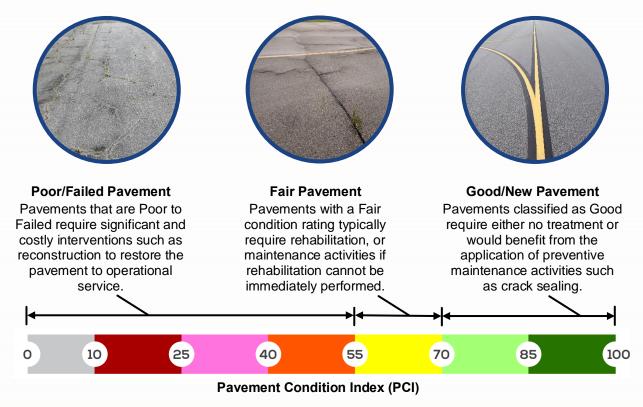
Estimated Age at Inspection



*This drawing is for pavement management purposes only. Drawing not to scale.

Construction History

 $^{^{\}ast} This$ drawing is for pavement management purposes only. Drawing not to scale.



CHAPTER 3 – PAVEMENT CONDITION ANALYSIS

Pavement Condition Index

A Pavement Condition Index (PCI) survey is the primary means of obtaining and recording pavement distress data. In adherence to FAA Advisory Circular 150/5380-7B, the FDOT SAPMP utilizes the PCI survey methodology to collect pavement distress data and analyze the condition. This method uses a visual statistical sampling of pavements for recording primary distress types, associated severities, and quantities as defined by the ASTM D5340-23.

The distress data collected during the survey is used to calculate a PCI score, which quantifies the functional condition of the pavement on a scale from 0 (failed pavement) to 100 (Good or new pavement). The figure below provides a visual representation of this scale. For this study, pavement facilities that have been rehabilitated within the past 24 months or have construction funding secured for a major rehabilitation project within the next 12 months, may have been omitted from this assessment.

FDOT

Typical Pavement Distress Summary

Pavement conditions were documented at DTS by an experienced pavement evaluation team in 2024. Both pavement distresses and PCI values are used to determine a pavement's M&R needs. Below are descriptions of commonly observed distresses found at DTS during the visual PCI survey.

Bleeding

Bleeding is a film of bituminous material on the pavement surface that occurs when asphalt fills the voids of the mix during hot weather and then expands out onto the surface of the pavement.

Block Cracking

Block cracking is typically a climate-induced distress caused by daily temperature cycles and shrinkage of the asphalt surface. A pattern of large blocks up to 10'x10' are formed as numerous cracks intersect.

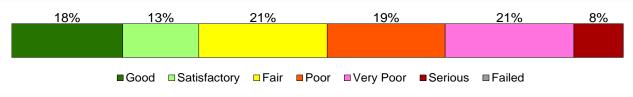
L&T Cracking

Longitudinal & Transverse Cracking is typically a climate-induced distress caused by shrinkage of the asphalt surface from low temperatures or hardening of the material. L&T cracking may also be caused by paving lane joint deterioration or reflective cracking from underlying cracks.

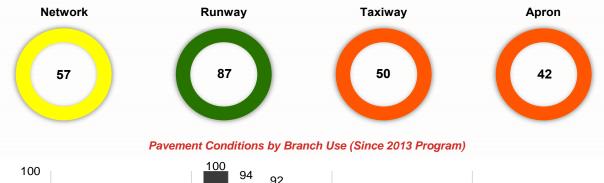
Raveling

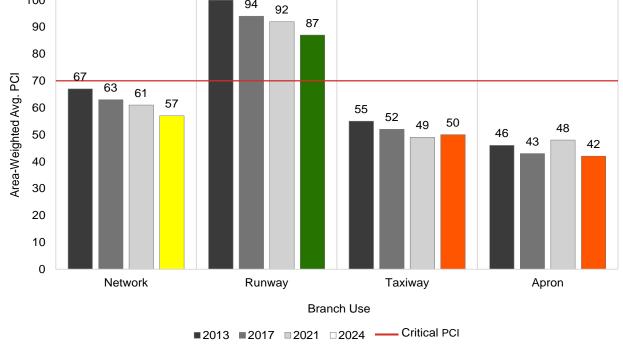
Raveling occurs when clusters of large (coarse) aggregate particles are dislodged from the pavement surface. Excess debris or FOD on the pavement surface can be a hazard to aircraft trafficking the pavement.

Weathering


Weathering is a climate-induced distress caused by oxidation and aging of the asphalt surface. The distress is evidenced by the wearing away of the asphalt binder and fine aggregate matrix from the pavement surface.

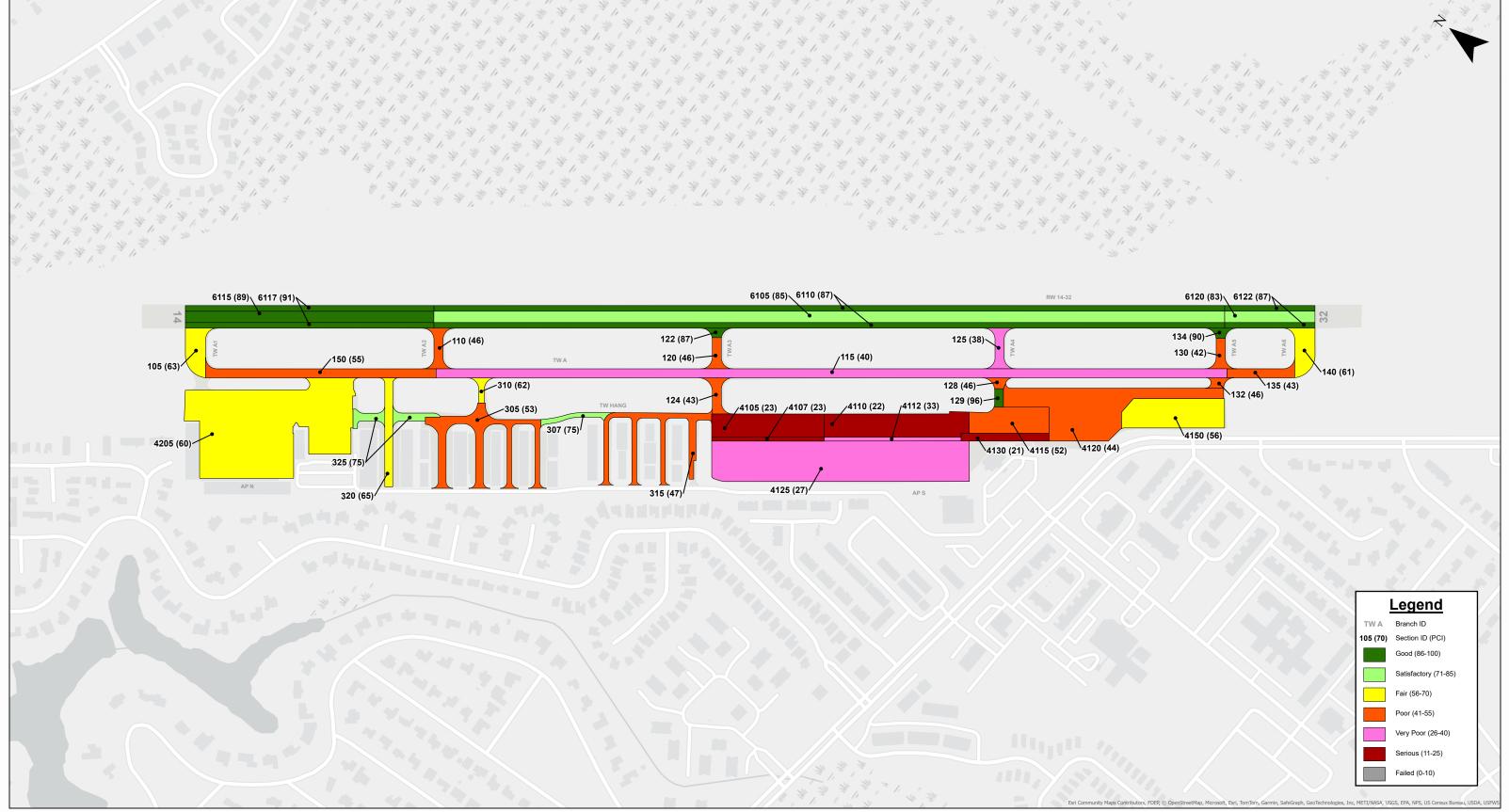
FDO


Pavement Condition Summary


DTS's overall area-weighted network PCI (average PCI adjusted to account for the relative size of the pavement sections) is a 57. Approximately 31% of the network's pavements are in Good or Satisfactory condition. Approximately 21% are in Fair condition, and 48% are in Poor condition or below and will likely require rehabilitation within the near future. The figure below summarizes the area-weighted average pavement condition distribution at DTS.

Current Condition - Overall Network

The area-weighted branch use PCIs are displayed graphically in the figures below. The current PCIs at a section-level are displayed graphically on the **Network PCI Results Exhibit** and in tabular format in the **Inventory and Pavement Condition Evaluation Results by Section** table.



AVIATION

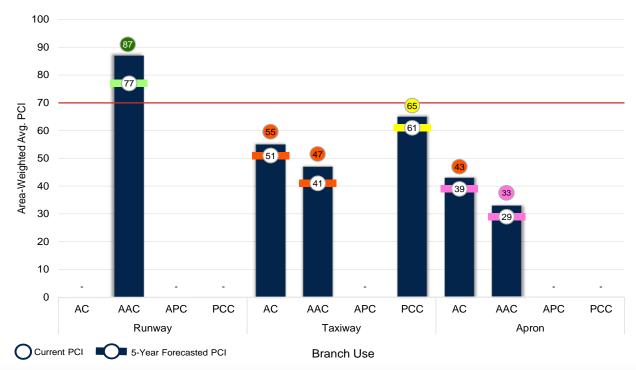
FDOŤ

PCI Network Results

*This drawing is for pavement management purposes only. Drawing not to scale.

Forecasted Pavement Condition Summary

One of the main goals of the SAPMP is to forecast the future condition of each pavement section. Prediction curves were developed in PAVER to determine typical deterioration rates which are then used to forecast a future PCI value. The forecasts do not guarantee future PCI values; they are a planning tool to aid in the timing of maintenance and rehabilitation activities.


The DTS network PCI is forecasted to deteriorate from a PCI value of 57 (Fair) to a 51 (Poor) in the next five years if no substantial maintenance and rehabilitation work is completed.

Forecasted Branch-Level Pavement Performance

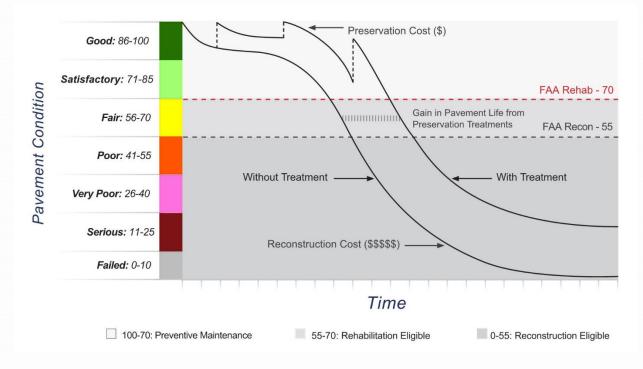
Branch Use	2024 (Current)	2025	2026	2027	2028	2029
Network	57	55	54	53	52	51
Runway	87	84	83	81	79	77
Taxiway	50	49	48	47	45	44
Apron	42	41	40	39	38	38

Section-level details are available in tabular format in the **Inventory and Pavement Condition Evaluation Results by Section** table.

FDO

AVIATION

18


CHAPTER 4 – M&R PLANNING AND BUDGET NEEDS

Maintenance and Rehabilitation Overview

An analysis was performed to assess the airfield pavement M&R needs over a 5-year period. The analysis compared the forecasted condition of each pavement section to the Critical PCI threshold to develop a resultant recommendation and associated cost for each year of the 5-year plan. The overall goal is to provide airports with fiscally conscious, timely and appropriate maintenance and rehabilitation recommendations. The projects recommended should enable responsible parties to do the following:

- >>> Maintain existing airport infrastructure at an acceptable condition
- >>> Make timely and cost-effective decisions to appropriately allocate funding
- Apply global maintenance, localized maintenance, and major M&R activities in a timely manner to maintain an acceptable operational condition of a pavement network

M&R planning considers various methods of repair to address the cause of the problem rather than just treating the symptom. As pavements deteriorate, repair costs can increase significantly. The figure below illustrates how the cost of pavement repairs can exponentially increase if M&R activities are delayed.

FDO

AVIATION

Pavement Life and the Effect of Treatments

Critical PCI Value

One of the most valuable aspects of the PCI methodology is the ability for an agency to save money by prioritizing the rehabilitation of pavement assets effectively. Critical PCI refers to the condition beyond which the rate of pavement deterioration and the cost of applying a treatment increases significantly. In other words, it is the condition at which maintenance may no longer be cost effective and major rehabilitation should be considered. As defined in the FAA AIP handbook and shown in the table below, the FAA has established recommended PCI thresholds for pavement M&R. Accordingly, the Critical PCI value for all airfield pavements is defined at 70.

AIP Handbook PCI Requirements

Airfield Pavement Project Type	PCI Requirement
Reconstruction	PCI < 55 (Poor)
Rehabilitation	PCI < 70 (Fair)
Maintenance	N/A

*Source: AIP Handbook, in reference to Runways, Taxiways, and Aprons as seen in table G-2, H-1, and I-1 respectively

Pavement Treatment Minimum Useful Life

Localized maintenance and major rehabilitation treatments have minimum useful life periods determined in the FAA AIP Handbook. Minimum useful life criteria can be used to help determine if a project is eligible for federal funding. The minimum useful life of the facility being rehabilitated or reconstructed must be met in order for the project to be funded. However, meeting minimum useful life may not always justify replacing the pavement facility if the PCI requirements have not been met.

AIP Handbook Minimum Useful Life

Airfield Pavement Project Type	Useful Life
Asphalt seal coat, Slurry Seal, and Joint Seal	3 years
Concrete Joint Replacement	7 years
Pavement Rehabilitation (not reconstruction)	10 years
Pavement Reconstruction	20 years

AVIATION

FDOT

Localized Maintenance Needs

Localized maintenance is best used as a preservation measure and is applied to slow the rate of deterioration. These activities can be applied either as a preventive measure or a safety ("stopgap") measure. The two (2) types of localized maintenance are described below in further detail.

- Decalized Preventive Maintenance and Repair: Distress maintenance activities performed with the primary objective of slowing the rate of deterioration on pavements <u>above Critical PCI</u>. These activities typically include crack sealing and patching.
- Decalized Stopgap/Safety Maintenance and Repair: Is typically applied to pavement sections that are <u>at or below the Critical PCI</u> value as a temporary repair or due to safety concerns. These activities are typically applied to high-severity distresses or distresses impacting operations.

Localized maintenance differs from major rehabilitation in that it is applied based on the distresses observed rather than being based on a PCI value. Treatments are selected based on the appropriate corrective measure for a given distress type and severity level. These work quantities are limited to a near-term application since they are determined from the most recent PCI assessment. As pavements continue to deteriorate year-to-year, quantities and/or distress severities may increase, which will affect the amount and type of localized maintenance required. This analysis can be utilized as a planning tool to assist in determining an annual budget allocation for maintenance activities. The anticipated Year 1 Localized Maintenance recommendations by work type for each branch use are summarized below. The planning-level costs are rounded up to the nearest 10-dollar increment.

Maintonanaa Catagony	Work Tupo	Rough Es	stimate of V	Vork G	Work Units	Planning		
Maintenance Category	Work Type	RW	тw	TL	AP		Material Cost	
Localized Preventive	AC Crack Sealing	250	126	-	-	LF	\$	1,890
Maintenance	Surface Seal	37,499	13,854	-	-	SF	\$	64,200
		Loc	alized Prev	ventive	e Mainter	ance Total	\$	66,090
	PCC Partial-Depth Patching	-	8	-	-	SF	\$	1,690
	PCC Joint Seal	-	1,575	-	-	LF	\$	9,060
Localized Stopgap Maintenance	AC Full-Depth Patching	-	115	-	3,760	SF	\$	55,230
	PCC Full-Depth Patching	-	87	-	-	SF	\$	4,380
		L	ocalized S	topgap	Mainter	ance Total	\$	70,360
Total Localized Maintenance Needs							\$	136,450

Year 1 Localized Maintenance by Work Type Summary

A table providing a breakdown of the anticipated planning-level costs by section for those areas exhibiting distresses that would benefit from Year 1 Localized M&R is located in **Appendix B – M&R Planning Needs.**

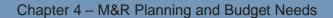
FDOT

Major Rehabilitation Project Types

Major rehabilitation project needs are identified by analyzing the Airport's pavement condition in relationship to Critical PCI and density of load-related distresses, assuming there are no budget constraints.

The needs analysis is performed over a 5-year planning period. Major rehabilitation is divided into two policy categories:

- >>> Intermediate Major Rehabilitation (PCI 55 to 70)
 - **AC:** Combination of asphalt pavement milling and overlay with 15% of the area estimated to need full-depth reconstruction OR alternatively, a PCC Overlay.
 - **PCC:** Combination of crack sealing, joint seal replacement, limited patching, and 15% slab replacement.
 - Rehab Alternative PCC Overlay of an Existing Flexible Pavement: The application of a PCC pavement layer on top of an existing asphalt surface that exhibits surface distresses but does not require extensive structural improvements. PCC overlays effectively extend the life of structurally sound pavement, offering a longer lifespan than traditional mill and overlays.


>>> Full-Depth Reconstruction or Reclamation (PCI < 55)

- Removal and replacement of the existing pavement section down to the subgrade.
- Rehab Alternative Full-Depth Reclamation (FDR): The process of pulverizing the existing asphalt layer and part of the underlying base, mixing the materials with stabilizing agents, and compacting to form a durable new base. This method is ideal for addressing structural issues such as deep cracks, rutting, or base failures, providing a cost-effective and sustainable alternative to full-depth reconstruction.

👌 🚯 AVIATION

FDOT

The alternative work types offer different rehabilitation methods that can potentially reduce costs and extend the design life compared to traditional approaches. These methods depend heavily on the condition and composition of in-situ materials.

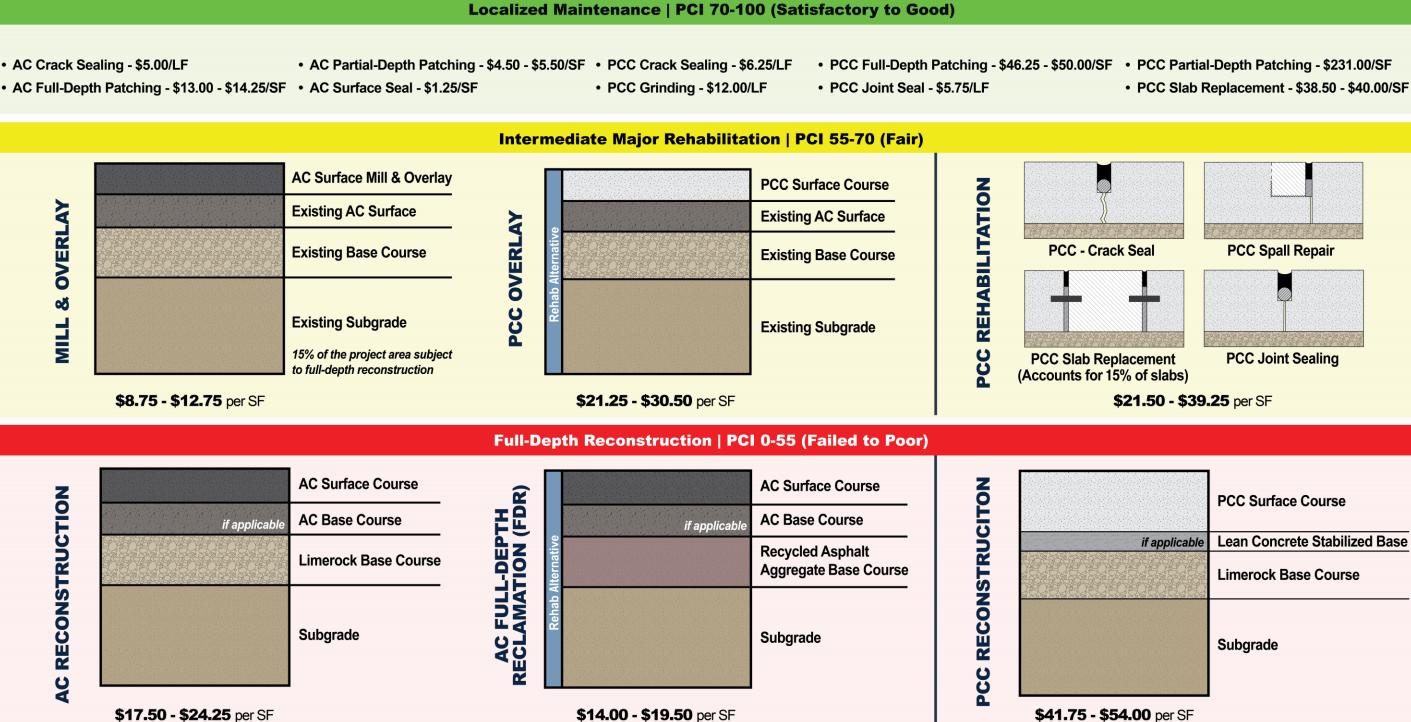
M&R Planning Cost Development

The project cost estimates are calculated using a unit cost per square foot for pavement-related expenses for each of the work types defined in **Major Rehabilitation Project Types**. Additional project cost factors applied to the unit cost of the defined pavement section are summarized below.

- >>> Non-Pavement Costs (Drainage and Electrical Modification)
- >>> General Project Contingency/Design Evolution
- >>> Airport Classification Factor
- >>> FDOT Location Factors

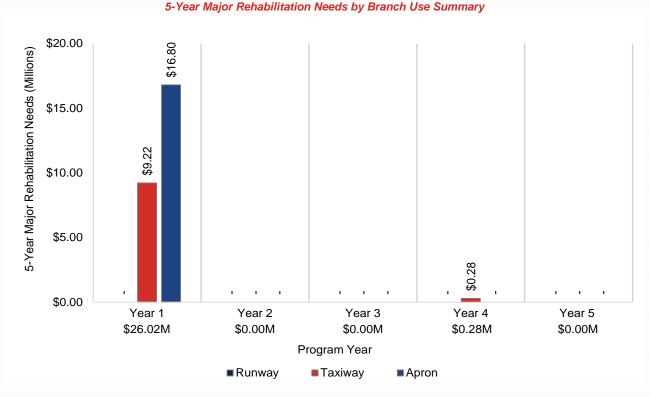
The conceptual pavement sections for the major rehabilitation project types and their associated unit costs are summarized on the following page. Given the diverse fleet mixes across Florida's GA Airports, the unit costs for each major rehabilitation type are presented as a range. This approach accommodates the cost differences between pavement sections designed for light and heavy GA traffic.

Conceptual pavement sections designated as Rehab Alternative on the following page, PCC Overlay and AC Full-Depth Reclamation, were not used as part of the major rehabilitation needs presented in the **Major Rehabilitation Needs Summary** of this report. These are meant as alternatives to the typical major rehabilitation activities recommended to airports. The cost of the recommended rehabilitation activities and the design alternative options are summarized in **Appendix B – M&R Planning Needs**.


The identification of rehabilitation needs and conceptual pavement sections have been determined at the planning level. No warranty or assurance is implied in this document for final design nor construction for any airfield pavements discussed within this report. Design-level investigation is recommended prior to developing construction-level design documents and budgets.

AVIATION

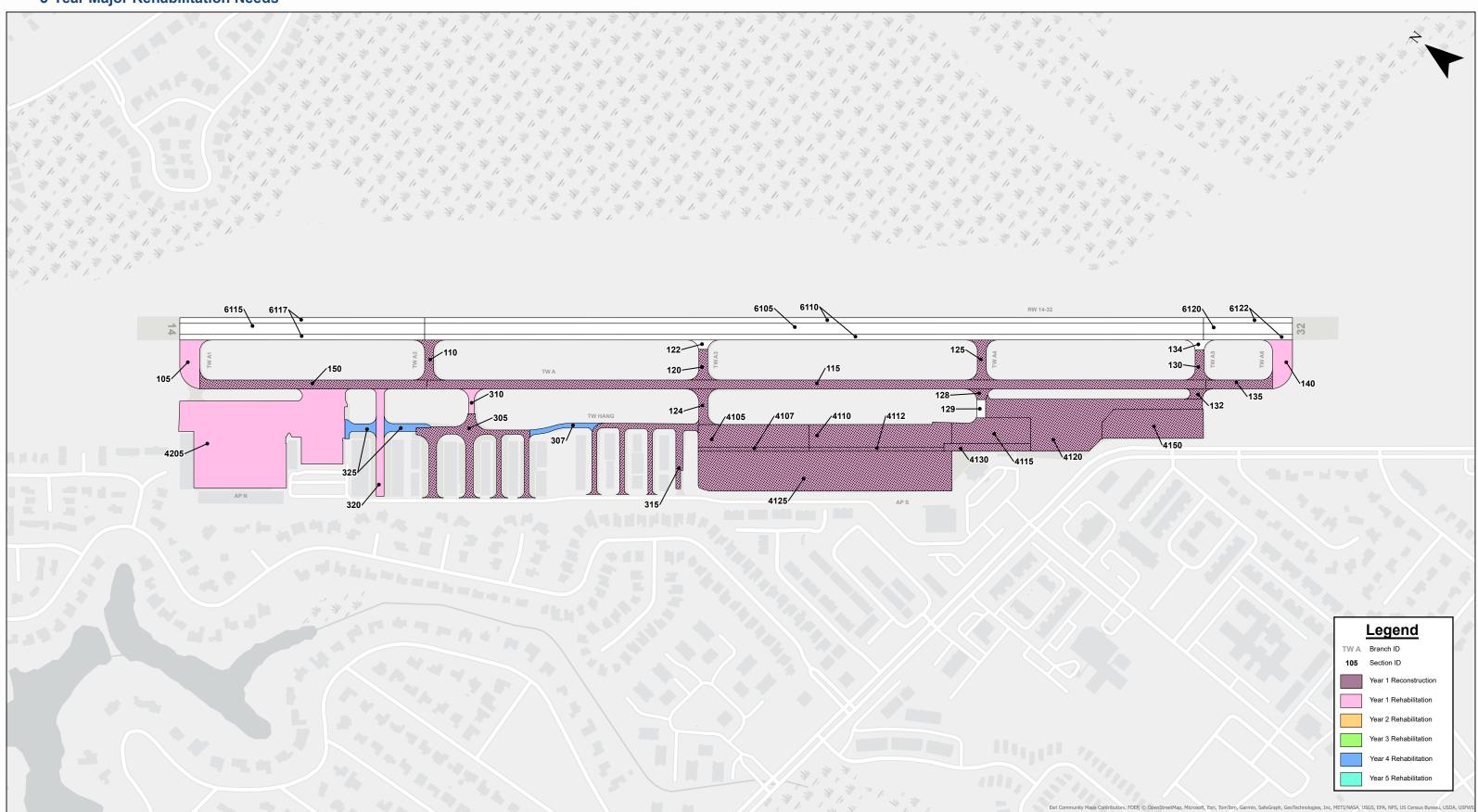
FDOT


	PCC Surface Course
if applicable	Lean Concrete Stabilized Base
	Limerock Base Course
	Subgrade
\$54.00 per SF	

Major Rehabilitation Needs Summary

Total 5-Year Major Needs = \$26,303,000

			AC Re	construction AC	Rehabilitation	PCC Rehabilitation		
\$21,674,000						000 –⁄ \$674,000 –⁄		
5-Year Major Rehabilitation Needs by Branch Use								
	Annual Planning Estimate Cost (Millions)							
Branch Use ⁻	Year 1	Year 2	Year 3	Year 4	Year 5	Branch Use Total		
Runway	-	-	-	-	-	-		
Taxiway	\$9.22	-	-	\$0.28	-	\$9.50		
Apron	\$16.80	-	-	-	-	\$16.80		
Annual Total	\$26.02M	\$0.00M	\$0.00M	\$0.28M	\$0.00M	\$26.30M		


The **Major Rehabilitation Exhibit** depicts which sections will need major rehabilitation within the next 5 years. **Appendix B** provides a section-level detailed summary of these needs in addition to the cost of various rehabilitation options should a different pavement rehabilitation type be desired.

FDO

AVIATION

25

5-Year Major Rehabilitation Needs

 $^{^{\}ast} This$ drawing is for pavement management purposes only. Drawing not to scale.

Major Rehabilitation Budget Analysis

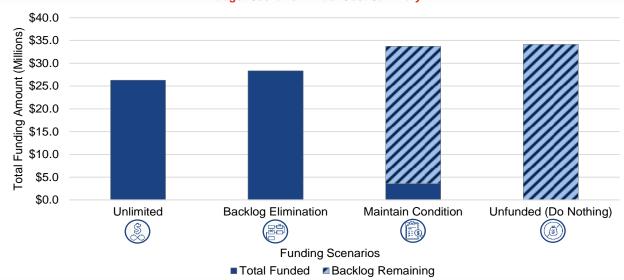
Major Rehabilitation needs are identified by analyzing the airport's pavement condition in relationship to critical PCI, major rehabilitation policies, and unit costs, assuming there are no budget constraints. While this is financially impractical, it yields the unbiased pavement needs over a defined timeframe at each airport given current and forecasted pavement conditions.

Given the inherent uncertainty in available future funding, multiple budget scenarios were analyzed. These scenarios are based on the concept that each pavement section will be repaired at a unit cost specific to its condition. The budget scenarios help identify the impact that various funding levels have on the overall pavement needs. Budget scenarios analyzed were as follows:

- Unlimited Budget Assumes unlimited funding available for M&R, with all present needs being addressed in the first planning year (best case scenario due to no inflation)
- Backlog Elimination An iterative budget scenario to determine the dollars necessary per year to eliminate all major M&R backlog over the 5-year analysis period
- Maintain Current Condition Iterative budget scenario to determine the dollars necessary per year to maintain the overall network condition.
- Unfunded (Do nothing) Assumes no funding available to perform M&R (worst case scenario)

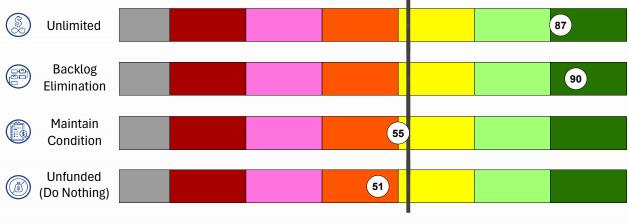
This theoretical analysis is used to identify the approximate budget needed to maintain and rehabilitate the current pavement network over the next 5-years. The major rehabilitation needs identified within the PAVER budget scenario analysis are not recommendations for timing of projects. They are utilized to determine the current and future needs of the airfield pavements, identify the effects of major rehabilitation delay, and determine the overall backlog of the existing pavement system.

The budget analysis assumes the airport's current network-level PCI value as the starting point and applies specific performance models to each pavement section to forecast future PCI values. As lower funding levels are applied, resulting PCI values drop and unfunded backlog (remaining work left undone) increase.


The budget analyses for this airport are on the following page. Costs are assigned according to the PCI value of the section at the year rehabilitation is determined. Of note, backlog grows as major rehabilitation is delayed due to the declination of condition and inflation of the rehabilitation costs.

AVIATION

FDO'



	Budg	et Scenario Annu	al Needs Estimate		
	PCI by	y Year		Scenario Costs	
Funding Scenario	2024 PCI	2029 PCI	Total Funded	Avg. Annual Funding	Unfunded Backlog at 2029
Unlimited	57	87	\$26,301,000	\$5,260,200	\$0
Backlog Elimination	57	90	\$28,341,000	\$5,668,200	\$0
Maintain Condition	57	55	\$3,567,000	\$713,400	\$30,181,000
Unfunded (Do Nothing)	57	51	\$0	\$0	\$34,155,000

Budget Scenario Annual Cost Summary

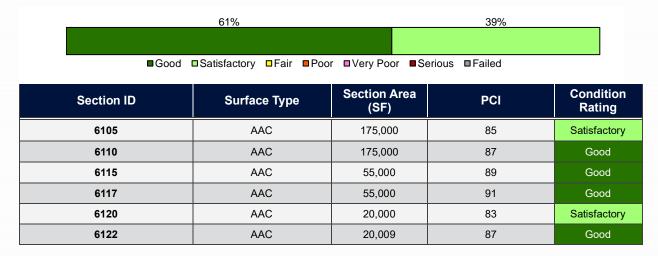
Financial Impact on Pavement Condition

Current PCI: 57

FDOT AVIATION

28

APPENDIX A – PAVEMENT CONDITION OBSERVATIONS



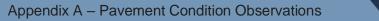
Runway Condition Observations

RW 14-32

Branch ID	Branch Use	Number of Sections	Branch Area (SF)	Branch Area- Weighted Avg PCI	Branch Condition Rating
RW 14-32	RUNWAY	6	500,009	87	Good

The following bar graph shows proportional distribution (as % of area within branch) of condition categories among sections within the branch. Given the individual section data shown in the subsequent table, the distribution is as follows: 61% Good (86-100 PCI), 39% Satisfactory (71-85 PCI).

RW 14-32 consists of 6 flexible pavement sections, totaling 500,009 sf. The last major construction date for the branch was 2013, resulting in an area-weighted average age at inspection of 11 years old. Overall, RW 14-32 is in Good condition with an area-weighted average PCI of 87.



RW 14-32:6110

FDC

RW 14-32:6120

RW 14-32:6122

AVIATION

31

Taxiway Condition Observations

TW A

Branch ID	Branch ID Branch Use	Number of Sections	Branch Area (SF)	Branch Area- Weighted Avg PCI	Branch Condition Rating
TW A	TAXIWAY	3	193,869	43	Poor

The following bar graph shows proportional distribution (as % of area within branch) of condition categories among sections within the branch. Given the individual section data shown in the subsequent table, the distribution is as follows: 28% Poor (41-55 PCI), 72% Very Poor (26-40 PCI).

		28%		72%		
■Good ■Satisfactory ■Fair ■Poor ■Very Poor ■Serious ■Failed						
	Secti	on ID	Surface Type	Section Area (SF)	PCI	Condition Rating
	11	5	AAC	140,000	40	Very Poor
	13	5	AAC	12,535	43	Poor
	15	0	AAC	41 334	55	Poor

TW A consists of 3 flexible pavement sections, totaling 193,869 sf. The last major construction date for the branch was 1992, resulting in an area-weighted average age at inspection of 32 years old. Overall, TW A is in Poor condition with an area-weighted average PCI of 43.

FDC

TW A:115

TW A1

Branch ID	Branch Use	Number of Sections	Branch Area (SF)	Branch Area- Weighted Avg PCI	Branch Condition Rating
TW A1	TAXIWAY	1	18,192	63	Fair

The following bar graph shows proportional distribution (as % of area within branch) of condition categories among sections within the branch. Given the individual section data shown in the subsequent table, the distribution is as follows: 100% Fair (56-70 PCI).

				100	%				
	∎Good	■Satisfactory	□Fair	■ Poor	■Very Poor	∎Ser	rious	■ Failed	
Section ID		Surfac	се Туре		Section Are (SF)	ea		PCI	Condition Rating

Section ID	Surface Type	Section Area (SF)	PCI	Rating
105	AAC	18,192	63	Fair

TW A1 consists of 1 flexible pavement section, totaling 18,192 sf. The last major construction date for the branch was 1992, resulting in an area-weighted average age at inspection of 32 years old. Overall, TW A1 is in Fair condition with an area-weighted average PCI of 63.

AVIATION

32

FDOT

TW A1:105

TW A2

Branch ID	Branch Use	Number of Sections	Branch Area (SF)	Branch Area- Weighted Avg PCI	Branch Condition Rating
TW A2	TAXIWAY	1	9,346	46	Poor

The following bar graph shows proportional distribution (as % of area within branch) of condition categories among sections within the branch. Given the individual section data shown in the subsequent table, the distribution is as follows: 100% Poor (41-55 PCI).

		100%		
■Good	■Satisfactory ■Fair ■P	oor ∎Very Poor ∎S	erious ∎Failed	
Section ID	Surface Type	Section Area (SF)	PCI	Condition Rating

Section ID	Surface Type	Section Area (SF)	PCI	Condition Rating
110	AAC	9,346	46	Poor

TW A2 consists of 1 flexible pavement section, totaling 9,346 sf. The last major construction date for the branch was 1992, resulting in an area-weighted average age at inspection of 32 years old. Overall, TW A2 is in Poor condition with an area-weighted average PCI of 46.

TW A3

Branch ID	Branch Use	Number of Sections	Branch Area (SF)	Branch Area- Weighted Avg PCI	Branch Condition Rating
TW A3	TAXIWAY	3	17,606	51	Poor

The following bar graph shows proportional distribution (as % of area within branch) of condition categories among sections within the branch. Given the individual section data shown in the subsequent table, the distribution is as follows: 16% Good (86-100 PCI), 84% Poor (41-55 PCI).

FDOT

AVIATION

16%		84%		
Good	□Satisfactory □Fair ■Poo	r ∎Very Poor ∎Se	erious Failed	
Section ID	Surface Type	Section Area (SF)	PCI	Condition Rating
120	AAC	6,596	46	Poor
122	AAC	2,749	87	Good

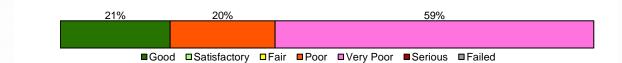
TW A3 consists of 3 flexible pavement sections, totaling 17,606 sf. The last major construction dates range from 1992 to 2013, resulting in an area-weighted average age at inspection of 29 years old. Overall, TW A3 is in Poor condition with an area-weighted average PCI of 51.

8,261

AAC

Poor

AVIATION


43

TW A4

124

Branch ID	Branch Use	Number of Sections	Branch Area (SF)	Branch Area- Weighted Avg PCI	Branch Condition Rating
TW A4	TAXIWAY	3	15,638	52	Poor

The following bar graph shows proportional distribution (as % of area within branch) of condition categories among sections within the branch. Given the individual section data shown in the subsequent table, the distribution is as follows: 21% Good (86-100 PCI), 20% Poor (41-55 PCI), 59% Very Poor (26-40 PCI).

Section ID	Surface Type	Section Area (SF)	PCI	Condition Rating
125	AAC	9,346	38	Very Poor
128	AC	3,073	46	Poor
129	AC	3,219	96	Good

TW A4 consists of 3 flexible pavement sections, totaling 15,638 sf. The last major construction date for the branch was 1992, resulting in an area-weighted average age at inspection of 32 years old. Overall, TW A4 is in Poor condition with an area-weighted average PCI of 52.

TW A4:125

TW A5

Branch ID	Branch Use	Number of Sections	Branch Area (SF)	Branch Area- Weighted Avg PCI	Branch Condition Rating
TW A5	TAXIWAY	3	12,572	54	Poor

The following bar graph shows proportional distribution (as % of area within branch) of condition categories among sections within the branch. Given the individual section data shown in the subsequent table, the distribution is as follows: 23% Good (86-100 PCI), 77% Poor (41-55 PCI).

Section ID	Surface Type	Section Area (SF)	PCI	Condition Rating
130	AAC	6,474	42	Poor
132	AAC	3,230	46	Poor
134	AAC	2,868	90	Good

TW A5 consists of 3 flexible pavement sections, totaling 12,572 sf. The last major construction dates range from 1992 to 2013, resulting in an area-weighted average age at inspection of 27 years old. Overall, TW A5 is in Poor condition with an area-weighted average PCI of 54.

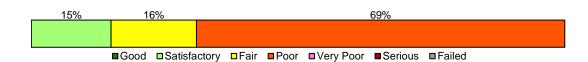
TW A6

Branch ID	ch ID Use Number of Sections		Branch Area (SF)	Branch Area- Weighted Avg PCI	Branch Condition Rating
TW A6			18,192	61	Fair

FDC

AVIATION

The following bar graph shows proportional distribution (as % of area within branch) of condition categories among sections within the branch. Given the individual section data shown in the subsequent table, the distribution is as follows: 100% Fair (56-70 PCI).


		10	0%			
■Good ■Satisfactory ■Fair ■Poor ■Very Poor ■Serious ■Failed						
	Section ID	Surface Type	Section Area (SF)	PCI	Condition Rating	
	140	AAC	18,192	61	Fair	

TW A6 consists of 1 flexible pavement section, totaling 18,192 sf. The last major construction date for the branch was 1992, resulting in an area-weighted average age at inspection of 32 years old. Overall, TW A6 is in Fair condition with an area-weighted average PCI of 61.

TW HANG

Branch ID	Use		Branch Area (SF)	Branch Area- Weighted Avg PCI	Branch Condition Rating
TW HANG	TAXIWAY	6	131,670	56	Fair

The following bar graph shows proportional distribution (as % of area within branch) of condition categories among sections within the branch. Given the individual section data shown in the subsequent table, the distribution is as follows: 15% Satisfactory (71-85 PCI), 16% Fair (56-70 PCI), 69% Poor (41-55 PCI).

Section ID	Surface Type	Section Area (SF)	PCI	Condition Rating	
305	AC	52,559	53	Poor	
307	AC	6,509	75	Satisfactory	
310	AC	3,873	62	Fair	
315	AC	38,377	47	Poor	
320	PCC	17,149	65	Fair	
325	AC	13,203	75	Satisfactory	

TW HANG consists of 5 flexible and 1 rigid pavement sections, totaling 131,670 sf. The last major construction dates range from 1999 to 2011, resulting in an area-weighted average age at inspection of 22 years old. Overall, TW HANG is in Fair condition with an area-weighted average PCI of 56.

AVIATION

36

TW HANG:305

TW HANG:315

AVIATION

37

Apron Condition Observations

AP N

Branch ID	Branch Use	Number of Sections	Branch Area (SF)	Branch Area- Weighted Avg PCI	Branch Condition Rating		
AP N	APRON 1		247,741	60	Fair		

The following bar graph shows proportional distribution (as % of area within branch) of condition categories among sections within the branch. Given the individual section data shown in the subsequent table, the distribution is as follows: 100% Fair (56-70 PCI).

		10	0%		
	■Good	□Satisfactory □Fair ■Poo	r ∎Very Poor ∎Se	erious ∎Failed	
	Section ID	Surface Type	Section Area (SF)	PCI	Condition Rating
	4205	AC	247 741	60	Fair

AP N consists of 1 flexible pavement section, totaling 247,741 sf. The last major construction date for the branch was 2008, resulting in an area-weighted average age at inspection of 16 years old. Overall, AP N is in Fair condition with an area-weighted average PCI of 60.

FDC

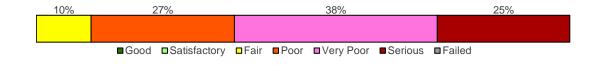
AP N:4205

AP N:4205

AP N:4205

AP N:4205

FDOT


AVIATION

38

AP S

Branch ID	Branch Use	Number of Sections	Branch Area (SF)	Branch Area- Weighted Avg PCI	Branch Condition Rating	
AP S	APRON	9	562,620	34	Very Poor	

The following bar graph shows proportional distribution (as % of area within branch) of condition categories among sections within the branch. Given the individual section data shown in the subsequent table, the distribution is as follows: 10% Fair (56-70 PCI), 27% Poor (41-55 PCI), 38% Very Poor (26-40 PCI), 25% Serious (11-25 PCI).

Appendix A – Pavement Condition Observations

Section ID	Surface Type	Section Area (SF)	PCI	Condition Rating	
4105	AAC	51,294	23	Serious	
4107	AAC	8,466	23	Serious	
4110	AC	66,322	22	Serious	
4112	AC	10,302	33	Very Poor	
4115	AAC	38,307	52	Poor	
4120	AC	112,955	44	Poor	
4125	AC	203,656	27	Very Poor	
4130	AAC	13,615	21	Serious	
4150	AC	57,703	56	Fair	

AP S consists of 9 flexible pavement sections, totaling 562,620 sf. The last major construction dates range from 1974 to 1992, resulting in an area-weighted average age at inspection of 41 years old. Overall, AP S is in Very Poor condition with an area-weighted average PCI of 34.

AP S:4110

AP S:4120

AP S:4125

AP S:4130

FDOŤ

39

APPENDIX B – M&R PLANNING NEEDS BY SECTION

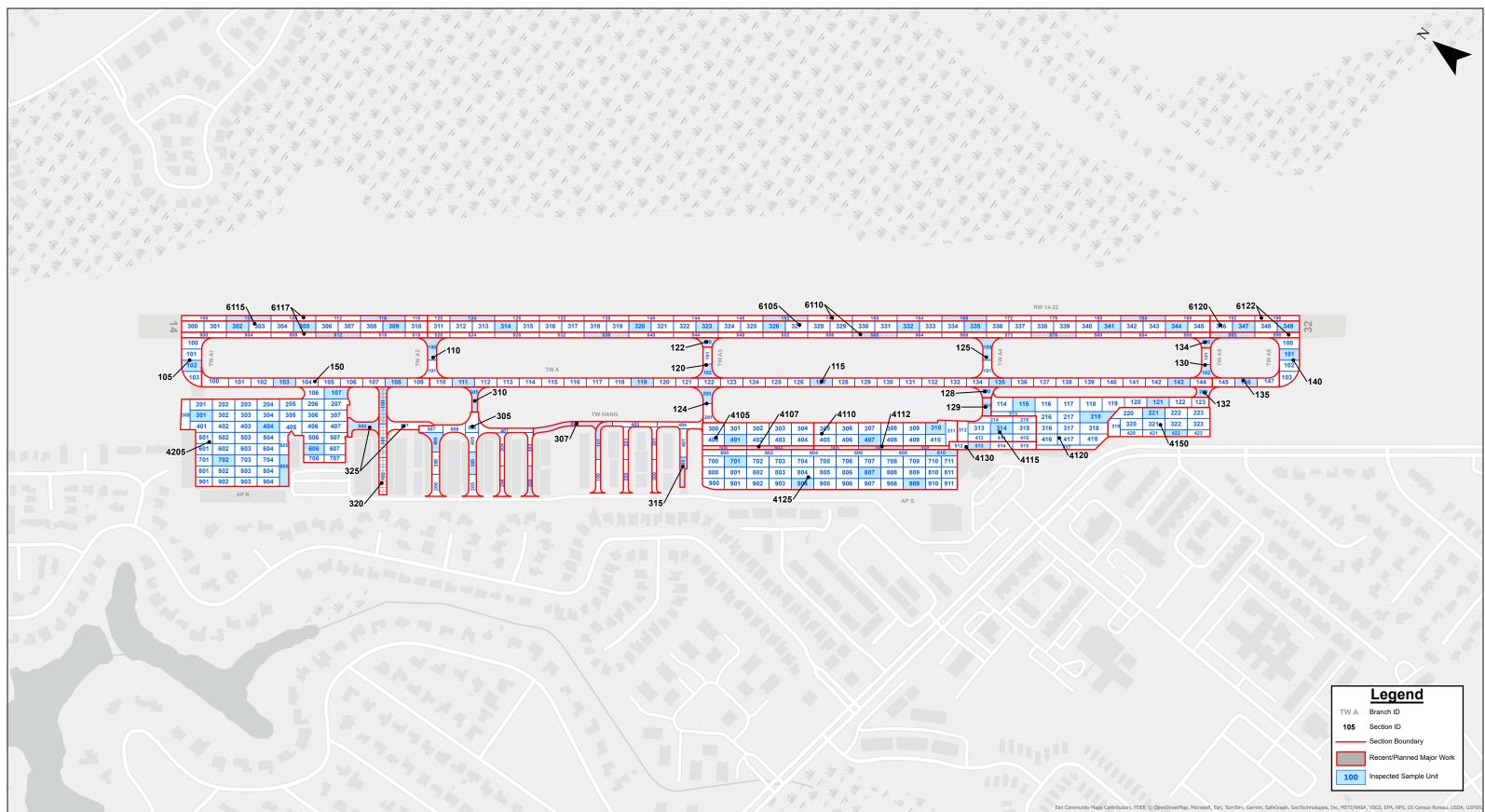
Localized Maintenance Recommendations by Section

Network ID	Bronch ID	Section ID	Description	Soverity		Distress Unit	Distrass Dansity	Doliov Type	Leastined Work Type
Network ID	Branch ID	Section ID	Description	Severity	Distress Qty	Distress Unit	Distress Density	Policy Type	Localized Work Type
DTS	RW 14-32	6105	WEATHERING	Medium	17,500	SF	10.0%	Preventive	Surface Seal
DTS	RW 14-32	6110	WEATHERING	Medium	8,750	SF	5.0%	Preventive	Surface Seal
DTS	RW 14-32	6110	L & T CR	Medium	250	Ft	0.1%	Preventive	AC Crack Sealing
DTS	RW 14-32	6115	WEATHERING	Medium	5,500	SF	10.0%	Preventive	Surface Seal
DTS	RW 14-32	6117	WEATHERING	Medium	2,750	SF	5.0%	Preventive	Surface Seal
DTS	RW 14-32	6120	WEATHERING	Medium	2,000	SF	10.0%	Preventive	Surface Seal
DTS	RW 14-32	6122	WEATHERING	Medium	999	SF	5.0%	Preventive	Surface Seal
DTS	TW A3	124	ALLIGATOR CR	Medium	76	SF	0.9%	Stopgap	AC Full-Depth Patching
DTS	TW HANG	307	L & T CR	Medium	45	Ft	0.7%	Preventive	AC Crack Sealing
DTS	TW HANG	307	WEATHERING	Medium	651	SF	10.0%	Preventive	Surface Seal
DTS	TW HANG	320	CORNER BREAK	Medium	3	Slabs	4.2%	Stopgap	PCC Full-Depth Patching
DTS	TW HANG	320	JT SEAL DMG	High	65	Slabs	100.0%	Stopgap	PCC Joint Seal
DTS	TW HANG	320	CORNER SPALL	Medium	3	Slabs	4.2%	Stopgap	PCC Partial-Depth Patching
DTS	TW HANG	325	WEATHERING	Medium	13,203	SF	100.0%	Preventive	Surface Seal
DTS	TW HANG	325	L & T CR	Medium	82	Ft	0.6%	Preventive	AC Crack Sealing
DTS	AP S	4107	ALLIGATOR CR	Medium	27	SF	0.3%	Stopgap	AC Full-Depth Patching
DTS	AP S	4125	L & T CR	High	177	Ft	0.1%	Stopgap	AC Full-Depth Patching
DTS	AP S	4130	ALLIGATOR CR	Medium	2,906	SF	21.3%	Stopgap	AC Full-Depth Patching

Work Qty	Work Unit	١	Nork Cost
17,500	SF	\$	21,880
8,750	SF	\$	10,940
250	LF	\$	1,250
5,500	SF	\$	6,880
2,750	SF	\$	3,440
2,000	SF	\$	2,500
999	SF	\$	1,250
115	SF	\$	1,650
45	LF	\$	230
651	SF	\$	820
87	SF	\$	4,380
1,575	LF	\$	9,060
8	SF	\$	1,690
13,203	SF	\$	16,510
81	LF	\$	410
52	SF	\$	740
581	SF	\$	8,300
3,127	SF	\$	44,560

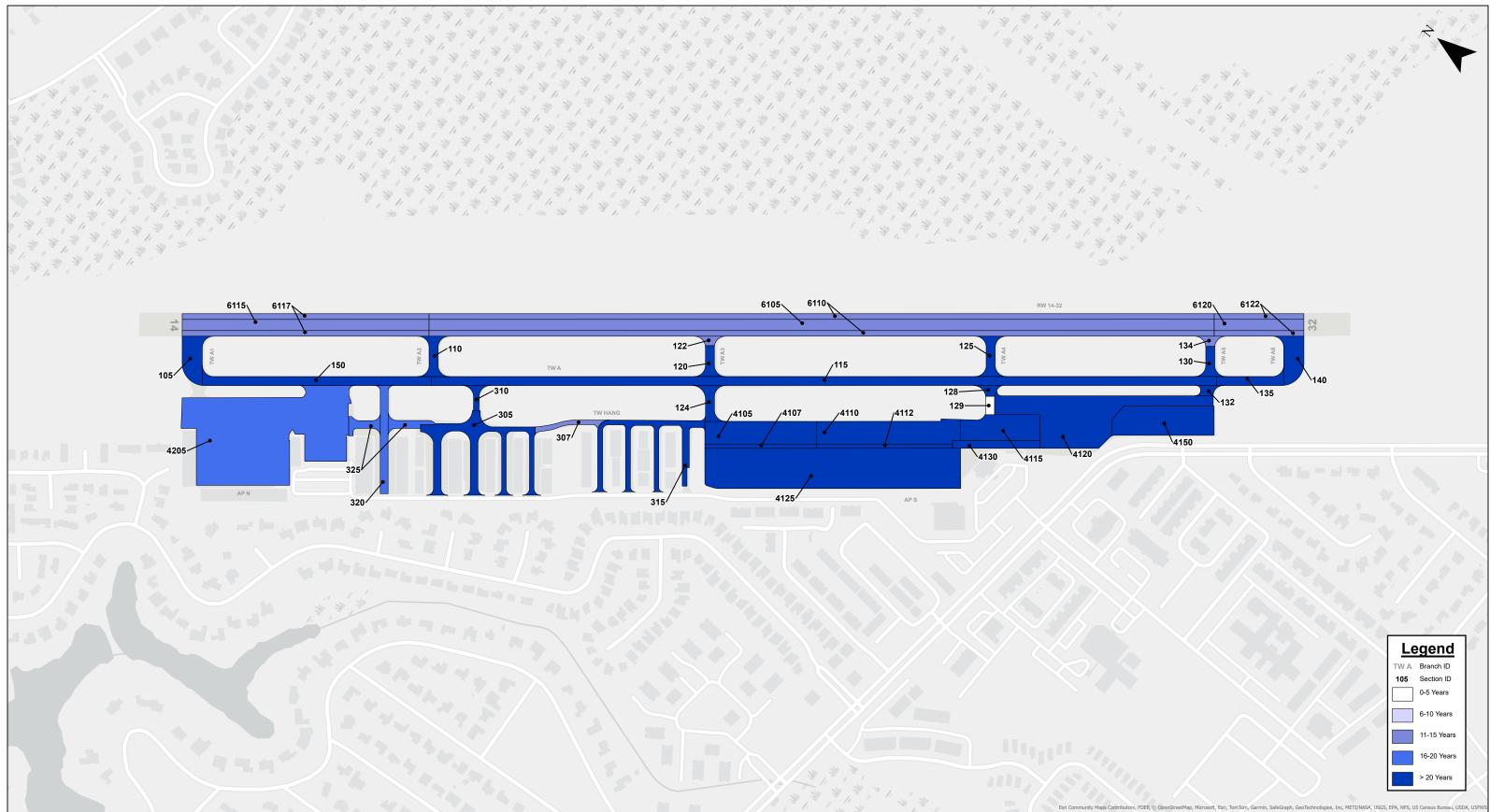
Major Rehabilitation Recommendations by Section

													Мај	jor Rehabilitat	tion D	esign Alternatives		
Program Year	Network ID	Branch ID	Section ID	Surface	Area (SF)	PCI Before	Rehabilitation Type	inning Cost Estimate	Mill &	Overlay	РС	C Overlay		Full Depth onstruction		AC Full Depth clamation (FDR)	PCC Rehabilitation	PCC Full Depth Reconstruction
Year 1	DTS	TW A	115	AAC	140,000	38	AC Reconstruction	\$ 3,396,000		-		-	\$	3,396,000	\$	2,731,000	-	-
Year 1	DTS	TW A	135	AAC	12,535	41	AC Reconstruction	\$ 304,000		-		-	\$	304,000	\$	245,000	-	-
Year 1	DTS	TW A	150	AAC	41,334	53	AC Reconstruction	\$ 1,003,000		-		-	\$	1,003,000	\$	807,000	-	-
Year 1	DTS	TW A1	105	AAC	18,192	61	AC Rehabilitation	\$ 232,000	\$	232,000	\$	555,000		-		-	-	-
Year 1	DTS	TW A2	110	AAC	9,346	44	AC Reconstruction	\$ 227,000		-		-	\$	227,000	\$	183,000	-	-
Year 1	DTS	TW A3	120	AAC	6,596	44	AC Reconstruction	\$ 160,000		-		-	\$	160,000	\$	129,000	-	-
Year 1	DTS	TW A3	124	AAC	8,261	41	AC Reconstruction	\$ 201,000		-		-	\$	201,000	\$	162,000	-	-
Year 1	DTS	TW A4	125	AAC	9,346	36	AC Reconstruction	\$ 227,000		-		-	\$	227,000	\$	183,000	-	-
Year 1	DTS	TW A4	128	AC	3,073	45	AC Reconstruction	\$ 75,000		-		-	\$	75,000	\$	60,000	-	-
Year 1	DTS	TW A5	130	AAC	6,474	40	AC Reconstruction	\$ 157,000		-		-	\$	157,000	\$	127,000	-	-
Year 1	DTS	TW A5	132	AAC	3,230	44	AC Reconstruction	\$ 79,000		-		-	\$	79,000	\$	63,000	-	-
Year 1	DTS	TW A6	140	AAC	18,192	59	AC Rehabilitation	\$ 232,000	\$	232,000	\$	555,000		-		-	-	-
Year 1	DTS	TW HANG	305	AC	52,559	52	AC Reconstruction	\$ 1,275,000		-		-	\$	1,275,000	\$	1,025,000	-	-
Year 1	DTS	TW HANG	310	AC	3,873	60	AC Rehabilitation	\$ 50,000	\$	50,000	\$	119,000		-		-	-	-
Year 1	DTS	TW HANG	315	AC	38,377	46	AC Reconstruction	\$ 931,000		-		-	\$	931,000	\$	749,000	-	-
Year 1	DTS	TW HANG	320	PCC	17,149	64	PCC Rehabilitation	\$ 674,000		-		-		-		-	\$ 674,000	-
Year 1	DTS	AP N	4205	AC	247,741	58	AC Rehabilitation	\$ 3,159,000	\$3	3,159,000	\$	7,557,000		-		-	-	-
Year 1	DTS	AP S	4105	AAC	51,294	22	AC Reconstruction	\$ 1,244,000		-		-	\$	1,244,000	\$	1,001,000	-	-
Year 1	DTS	AP S	4107	AAC	8,466	22	AC Reconstruction	\$ 206,000		-		-	\$	206,000	\$	166,000	-	-
Year 1	DTS	AP S	4110	AC	66,322	20	AC Reconstruction	\$ 1,609,000		-		-	\$	1,609,000	\$	1,294,000	-	-
Year 1	DTS	AP S	4112	AC	10,302	32	AC Reconstruction	\$ 250,000		-		-	\$	250,000	\$	201,000	-	-
Year 1	DTS	AP S	4115	AAC	38,307	50	AC Reconstruction	\$ 929,000		-		-	\$	929,000	\$	747,000	-	-
Year 1	DTS	AP S	4120	AC	112,955	43	AC Reconstruction	\$ 2,740,000		-		-	\$	2,740,000	\$	2,203,000	-	-
Year 1	DTS	AP S	4125	AC	203,656	25	AC Reconstruction	\$ 4,939,000		-		-	\$	4,939,000	\$	3,972,000	-	-
Year 1	DTS	AP S	4130	AAC	13,615	20	AC Reconstruction	\$ 331,000		-		-	\$	331,000	\$	266,000	-	-
Year 1	DTS	AP S	4150	AC	57,703	54	AC Reconstruction	\$ 1,400,000		-		-	\$	1,400,000	\$	1,126,000	-	-
Year 4	DTS	TW HANG	307	AC	6,509	69	AC Rehabilitation	\$ 94,000	\$	94,000	\$	224,000		-		-	-	-
Year 4	DTS	TW HANG	325	AC	13,203	69	AC Rehabilitation	\$ 190,000	\$	190,000	\$	453,000		-		-	-	-



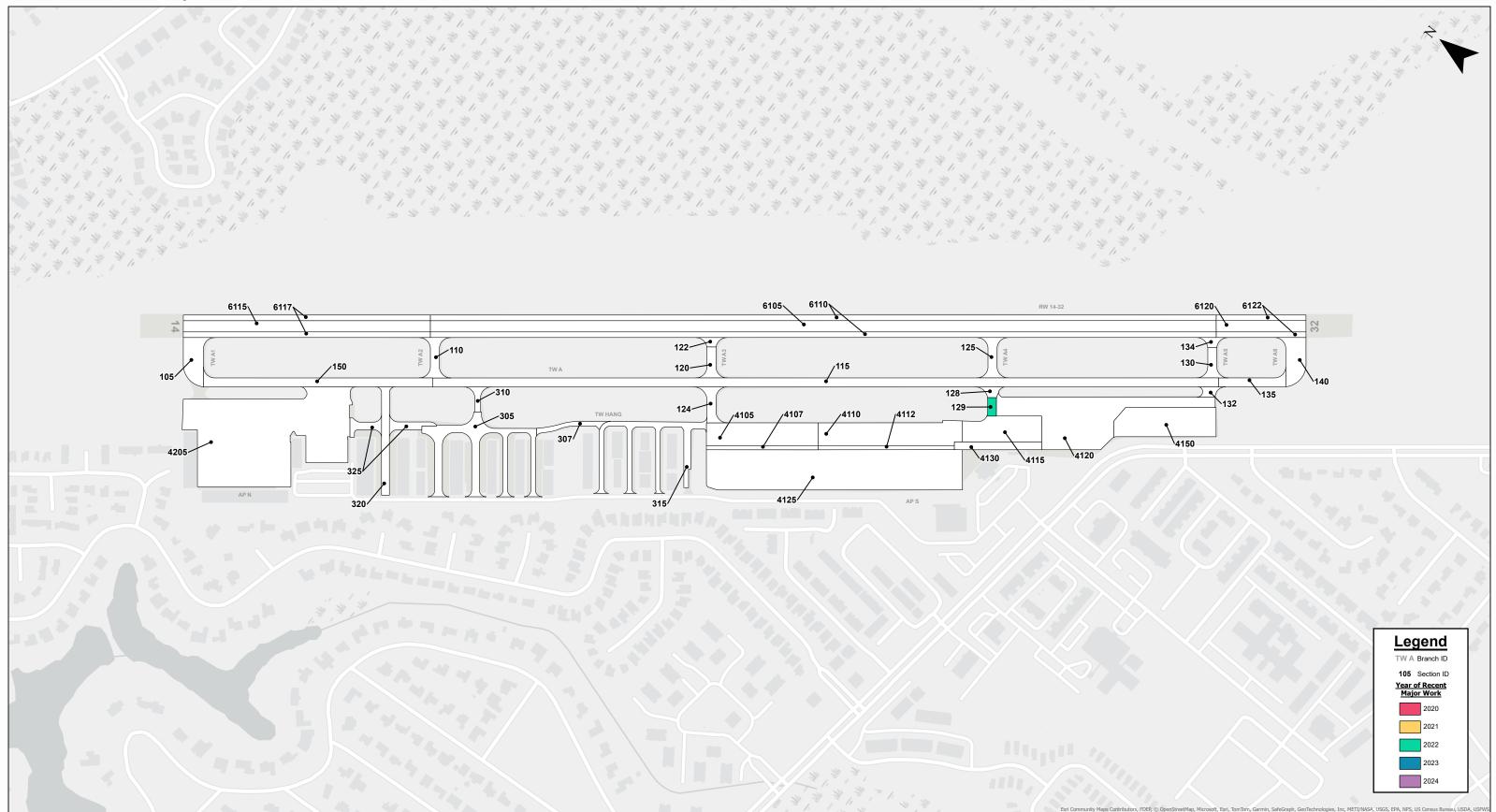
APPENDIX C – TECHNICAL EXHIBITS

Network Definition



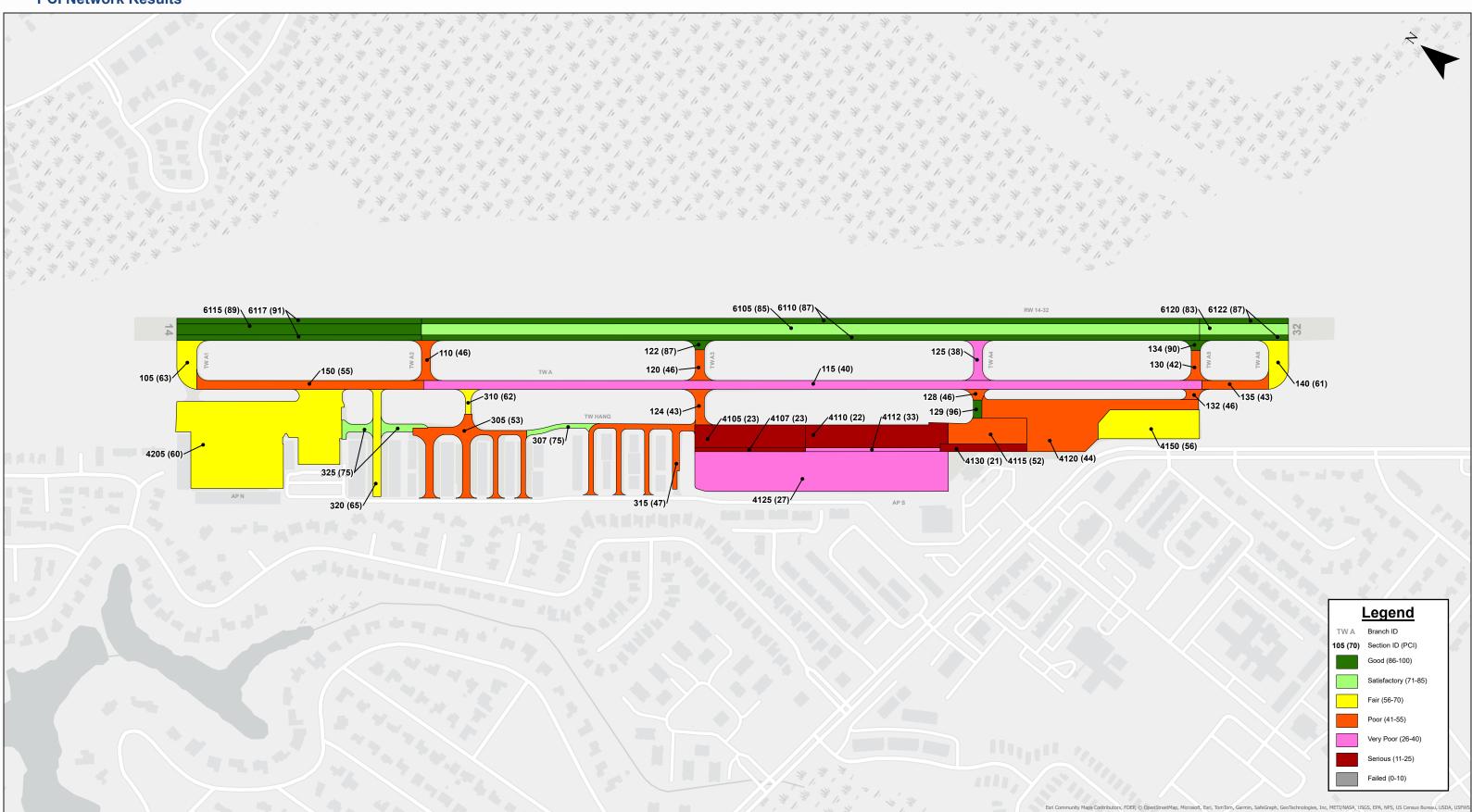
*This drawing is for pavement management purposes only. Drawing not to scale.

Estimated Age at Inspection

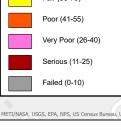


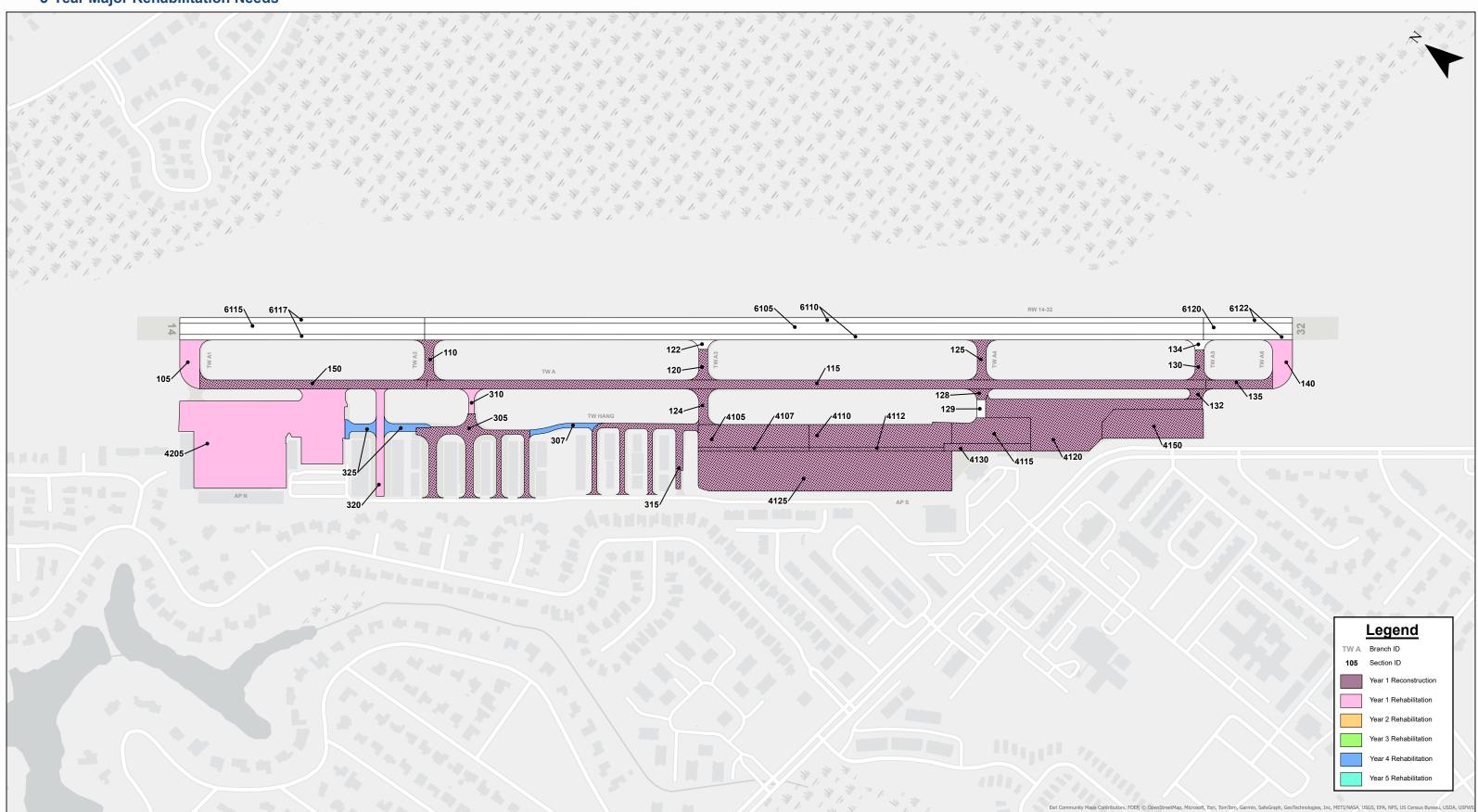
*This drawing is for pavement management purposes only. Drawing not to scale.

Construction History

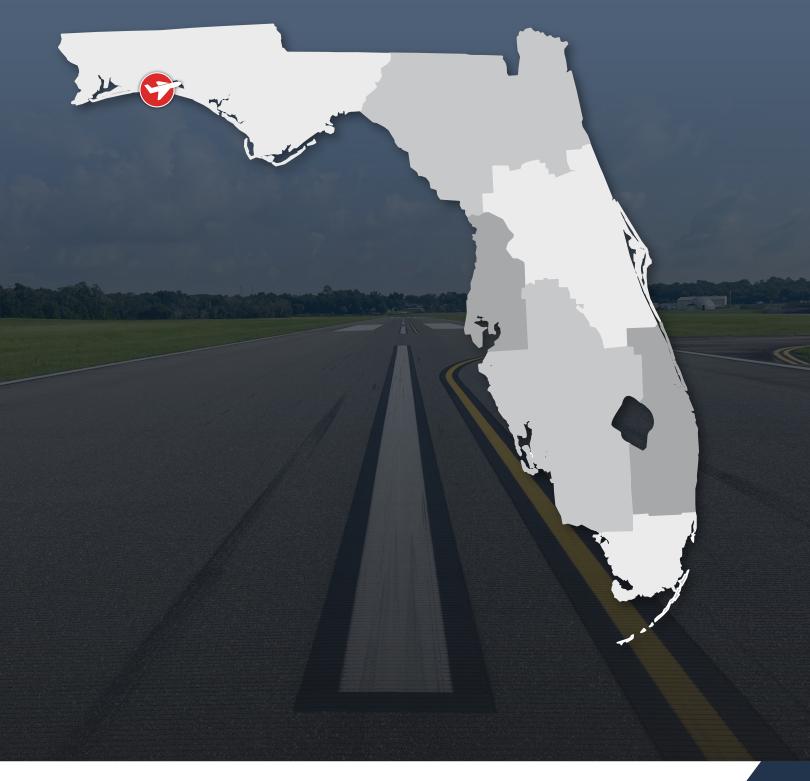


 $^{^{\}ast} This$ drawing is for pavement management purposes only. Drawing not to scale.


PCI Network Results


*This drawing is for pavement management purposes only. Drawing not to scale.

5-Year Major Rehabilitation Needs



 $^{^{\}ast} This$ drawing is for pavement management purposes only. Drawing not to scale.

DTS - Destin Executive Airport | District 3

